Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 114(2): 867-78, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-20000591

RESUMO

Ab initio molecular orbital calculations demonstrate that ionizing alkyl nitriles produces a dramatic geometry change involving lengthening of a C-CH(2)CN bond. The experimental determination of the adiabatic ionization energy of these species is thus very difficult. In addition, there are generally low barriers for 1,2-H shift reactions in the molecular ions leading to RCHCHN(+*) and RCHCNH(+*) isomers, which makes generating pure ionized alkyl nitrile in a mass spectrometer a challenge. Threshold photoelectron spectroscopy and threshold photoelecton photoion coincidence spectroscopy were employed to study the ionization and dissociation of two alkyl nitriles, in particular, pentanenitrile and 2,2-dimethylpropanenitrile. Threshold ionization is shown to result not in the respective molecular ions, but rather in isomeric forms, resulting in dissociation thresholds that lie below the calculated adiabatic ionization energies of the two molecules. Appearance energies for all observed fragment ions are reported and compared to available literature values. Charge separation in the dissociation of doubly ionized 2,2-dimethylpropanenitrile is observed as fragment-ion time-of-flight peak broadening at high photon energies.

2.
J Phys Chem A ; 113(20): 5823-31, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19388684

RESUMO

The threshold photoelectron spectra and threshold photoelectron photoion coincidence (TPEPICO) mass spectra of methyl t-butyl ether, (CH(3))(3)COCH(3) (MTBE), and methyl trimethylsilyl ether, (CH(3))(3)SiOCH(3) (MTMSE), have been measured using synchrotron radiation. The effect of silicon substitution on the unimolecular dissociation processes and the threshold photoelectron spectrum has been investigated. Both molecular ions dissociate at low internal energies. For ionized MTBE, the parent ion is no longer observed at an internal energy of only 0.2 eV. For this reason, it was not possible to fit the TPEPICO data to extract reliable thermochemical information. G3 level calculations place the molecular ion 5 kJ mol(-1) above the lowest-energy dissociation products, (CH(3))(2)COCH(3)(+) + (*)CH(3), suggesting the participation of an isomer, potentially the distonic ion (*)CH(2)(CH(3))(2)CO(+)(H)CH(3), in the dissociation. However, the calculations are not considered accurate enough to reliably determine the role this isomer plays, if any. RRKM modeling of the threshold region of the TPEPICO breakdown curves for ionized MTMSE leads to an E(0) for methyl loss of 63 +/- 2 kJ mol(-1), in good agreement with the G3 value of 66 kJ mol(-1). The resulting Delta(f)H(0) for (CH(3))(2)SiOCH(3)(+) of 384 +/- 10 kJ mol(-1) (Delta(f)H(298) = 361 +/- 10 kJ mol(-1)) is 28 kJ mol(-1) lower than the G3 value of 412 kJ mol(-1) due to the G3 Delta(f)H(0) for neutral MTMSE being 16 kJ mol(-1) higher than the previously reported value and the fact that the experimental IE(a) is 6 kJ mol(-1) lower than the G3 estimate. Appearance energy values for higher-energy fragmentation channels up to 36 (for MTBE) and 32 eV (for MTMSE) are reported and compared to literature values. An investigation of fragment ion peak broadening at high internal energy indicated that the two doubly charged molecular ions are not stable on the microsecond time scale. Each was found to dissociate into two singly charged ions along one or more neutral species.

3.
J Phys Chem A ; 113(41): 10923-32, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19775111

RESUMO

The threshold photoelectron spectrum (TPES) of tetrahydrofuran (THF) is compared to that of the unsaturated furan molecule. In general, there is a similarity in the orbital ionization profile for the two species, though unlike furan, THF exhibits (modest) vibrational detail only in the (9b)(-1) X (2)B band. An adiabatic ionization energy of 9.445 +/- 0.010 eV has been derived from the onset of the TPES spectrum. Threshold photoelectron photoion coincidence spectroscopy was used to explore the loss of a hydrogen atom from ionized THF over the photon energy range of 9.9-10.4 eV. RRKM fitting of the resulting breakdown curves yields an E(0) of 0.85 +/- 0.03 eV (82 +/- 3 kJ mol(-1)) (AE = 10.30 +/- 0.04 eV). If the G3 IE of 9.48 eV is used to convert the experimental data from photon energy to THF ion internal energy, E(0) = 0.81 +/- 0.01 eV (78 +/- 1 kJ mol(-1)). The latter value is closer to the G3 E(0) of 72 kJ mol(-1) for the formation of the cyclic ion 1. A variety of ring-opening reactions were also probed at the B3-LYP/6-31+G(d) and G3 levels of theory. The distonic isomer (*)CH(2)CH(2)CH(2)OCH(2)(+) lies 70 kJ mol(-1) higher than ionized THF, which places it within 1 kJ mol(-1) of the threshold for the dissociation to 1. All of the probed H-loss products from the distonic isomer (which includes singlet and triplet species) lie significantly higher in energy than ion 1, eliminating the possibility that ionized THF dissociates to m/z 71 via a ring-opening reaction in the present experiment. The derived Delta(double dagger)S value for the dissociation, 8 +/- 5 J K(-1) mol(-1), is also consistent with the formation of 1. The experimentally derived E(0) values can be used to derive the Delta(f)H(o)(0) for ion 1. Together with the Delta(f)H(o)(0) values for the THF ion (752.0 +/- 2 kJ mol(-1), derived from the neutral Delta(f)H(o)(0) of -154.9 +/- 0.7 kJ mol(-1) and experimental IE of 9.445 +/- 0.010 eV) and H atom (218.5 kJ mol(-1)) our E(0) of 82 +/- 3 kJ mol(-1) yields a Delta(f)H(o)(0) for ion 1 of 620 +/- 4 kJ mol(-1) (Delta(f)H(o)(298) = 594 +/- 4 kJ mol(-1)), in good agreement with the G3 Delta(f)H(o)(0) of 621 kJ mol(-1). Appearance energies for all fragment ions up to photon energies of 34 eV are also reported and discussed in comparison with the available literature.

4.
J Phys Chem A ; 110(28): 8663-75, 2006 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-16836427

RESUMO

The valence shell photoelectron spectrum, threshold photoelectron spectrum, and threshold photoelectron photoion coincidence (TPEPICO) mass spectra of acetone have been measured using synchrotron radiation. New vibrational progressions have been observed and assigned in the X 2B2 state photoelectron bands of acetone-h6 and acetone-d6, and the influence of resonant autoionization on the threshold electron yield has been investigated. The dissociation thresholds for fragment ions up to 31 eV have been measured and compared to previous values. In addition, kinetic modeling of the threshold region for CH3* and CH4 loss leads to new values of 78 +/- 2 kJ mol(-1) and 75 +/- 2 kJ mol(-1), respectively, for the 0 K activation energies for these two processes. The result for the methyl loss channel is in reasonable agreement with, but slightly lower than, that of 83 +/- 1 kJ mol(-1) derived in a recent TPEPICO study by Fogleman et al. The modeling accounts for both low-energy dissociation channels at two different ion residence times in the mass spectrometer. Moreover, the effects of the ro-vibrational population distribution, the electron transmission efficiency, and the monochromator band-pass are included. The present activation energies yield a Delta(f)H298 for CH3CO+ of 655 +/- 3 kJ mol(-1), which is 4 kJ mol(-1) lower than that reported by Fogleman et al. The present Delta(f)H298 for CH3CO+ can be combined with the Delta(f)H298 for CH2CO (-47.5 +/- 1.6 kJ mol(-1)) and H+ (1530 kJ mol(-1)) to yield a 298 K proton affinity for ketene of 828 +/- 4 kJ mol(-1), in good agreement with the value (825 kJ mol(-1)) calculated at the G2 level of theory. The measured activation energy for CH4 loss leads to a Delta(f)H298 (CH2CO+*) of 873 +/- 3 kJ mol(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA