RESUMO
Switch defective/sucrose nonfermentable (SWI/SNF) complexes are evolutionarily conserved multisubunit machines that play vital roles in chromatin architecture regulation for modulating gene expression via sliding or ejection of nucleosomes in eukaryotes. In plants, perturbations of SWI/SNF subunits often result in severe developmental disorders. However, the subunit composition, pathways of assembly, and genomic targeting of the plant SWI/SNF complexes are poorly understood. Here, we report the organization, genomic targeting, and assembly of 3 distinct SWI/SNF complexes in Arabidopsis thaliana: BRAHMA-Associated SWI/SNF complexes (BAS), SPLAYED-Associated SWI/SNF complexes (SAS), and MINUSCULE-Associated SWI/SNF complexes (MAS). We show that BAS complexes are equivalent to human ncBAF, whereas SAS and MAS complexes evolve in multiple subunits unique to plants, suggesting plant-specific functional evolution of SWI/SNF complexes. We further show overlapping and specific genomic targeting of the 3 plant SWI/SNF complexes on chromatin and reveal that SAS complexes are necessary for the correct genomic localization of the BAS complexes. Finally, we define the role of the core module subunit in the assembly of plant SWI/SNF complexes and highlight that ATPase module subunit is required for global complex stability and the interaction of core module subunits in Arabidopsis SAS and BAS complexes. Together, our work highlights the divergence of SWI/SNF chromatin remodelers during eukaryote evolution and provides a comprehensive landscape for understanding plant SWI/SNF complex organization, assembly, genomic targeting, and function.
Assuntos
Arabidopsis , Humanos , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromatina/genética , Cromatina/metabolismo , GenômicaRESUMO
Solid-solid reactions stand out in rechargeable sulfur-based batteries due to the robust redox couples and high sulfur utilization in theory. However, conventional solid-solid reactions in sulfur cathode always present slow reaction kinetics and huge redox polarization due to the low electronic conductivity of sulfur and the generation of various electrochemical inert intermediates. In view of this, it is crucial to improve the electrochemical activity of sulfur cathode and tailor the redox direction. Guided by thermodynamics analysis, short-chain sulfur molecules (S2-4) are successfully synthesized by space-limited domain principle. Unlike conventional cyclic S8 molecules with complex routes in solid-solid reaction, short-chain sulfur molecules not only shorten the length of the redox chain but also inhibit the formation of irreversible intermediates, which brings excellent redox dynamics and reversibility. As a result, the Cu-S battery built by short-chain sulfur molecules can deliver a high reversible capacity of 3,133 mAh g-1. To put this into practice, quasi-solid-state aqueous flexible battery based on short-chain sulfur molecules is also designed and evaluated, showing superior mechanical flexibility and electrochemical property. It indicates that the introduction of short-chain sulfur molecules in rechargeable battery can promote the development and application of high-performance sulfur-based aqueous energy storage systems.
RESUMO
Metal-sulfur batteries have received great attention for electrochemical energy storage due to high theoretical capacity and low cost, but their further development is impeded by low sulfur utilization, poor electrochemical kinetics, and serious shuttle effect of the sulfur cathode. To avoid these problems, herein, a triple-synergistic small-molecule sulfur cathode is designed by employing N, S co-doped hierarchical porous bamboo charcoal as a sulfur host in an aqueous Cu-S battery. Expect the enhanced conductivity and chemisorption induced by N, S synergistic co-doping, the intrinsic synergy of macro-/meso-/microporous triple structure also ensures space-confined small-molecule sulfur as high utilization reactant and effectively alleviates the volume expansion during conversion reaction. Under a further joint synergy between hierarchical structure and heteroatom doping, the resulting sulfur cathode endows the Cu-S battery with outstanding electrochemical performance. Cycled at 5 A g-1, it can deliver a high reversible capacity of 2,509.8 mAh g-1 with a good capacity retention of 97.9% after 800 cycles. In addition, a flexible hybrid pouch cell built by a small-molecule sulfur cathode, Zn anode, and gel electrolytes can firmly deliver high average operating voltage of about 1.3 V with a reversible capacity of over 2,500 mAh g-1 under various destructive conditions, suggesting that the triple-synergistic small-molecule sulfur cathode promises energetic metal-sulfur batteries.
RESUMO
Selenium sulfide (SeS2) features higher electronic conductivity than sulfur and higher theoretical capacity and lower cost than selenium, attracting considerable interest in energy storage field. Although nonaqueous Li/Na/K-SeS2 batteries are attractive for their high energy density, the notorious shuttle effect of polysulfides/polyselenides and the intrinsic limitations of organic electrolyte have hindered the deployment of this technology. To circumvent these issues, here we design an aqueous Cu-SeS2 battery by encapsulating SeS2 in a defect-enriched nitrogen-doped porous carbon monolith. Except the intrinsic synergistic effect between Se and S in SeS2, the porous structure of carbon matrix has sufficient internal voids to buffer the volume change of SeS2 and provides abundant pathways for both electrons and ions. In addition, the synergistic effect of nitrogen doping and topological defect not only enhances the chemical affinity between reactants and carbon matrix but also offers catalytic active sites for electrochemical reactions. Benefiting from these merits, the Cu-SeS2 battery delivers superior initial reversible capacity of 1,905.1 mAh g-1 at 0.2 A g-1 and outstanding long-span cycling performance over 1,000 cycles at 5 A g-1. This work applies variable valence charge carriers to aqueous metal-SeS2 batteries, providing valuable inspiration for the construction of metal-chalcogen batteries.
RESUMO
Seed vigor has major impact on the rate and uniformity of seedling growth, crop yield, and quality. However, the epigenetic regulatory mechanism of crop seed vigor remains unclear. In this study, a (jumonji C) JmjC gene of the histone lysine demethylase OsJMJ718 was cloned in rice, and its roles in seed germination and its epigenetic regulation mechanism were investigated. OsJMJ718 was located in the nucleus and was engaged in H3K9 methylation. Histochemical GUS staining analysis revealed OsJMJ718 was highly expressed in seed embryos. Abiotic stress strongly induced the OsJMJ718 transcriptional accumulation level. Germination percentage and seedling vigor index of OsJMJ718 knockout lines (OsJMJ718-CR) were lower than those of the wild type (WT). Chromatin immunoprecipitation followed by sequencing (ChIP-seq) of seeds imbibed for 24 h showed an increase in H3K9me3 deposition of thousands of genes in OsJMJ718-CR. ChIP-seq results and transcriptome analysis showed that differentially expressed genes were enriched in ABA and ethylene signal transduction pathways. The content of ABA in OsJMJ718-CR was higher than that in WT seeds. OsJMJ718 overexpression enhanced sensitivity to ABA during germination and early seedling growth. In the seed imbibition stage, ABA and ethylene content diminished and augmented, separately, suggesting that OsJMJ718 may adjust rice seed germination through the ABA and ethylene signal transduction pathways. This study displayed the important function of OsJMJ718 in adjusting rice seed germination and vigor, which will provide an essential reference for practical issues, such as improving rice vigor and promoting direct rice sowing production.
Assuntos
Germinação , Oryza , Germinação/genética , Oryza/metabolismo , Epigênese Genética , Sementes/metabolismo , Plântula/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Ácido Abscísico/metabolismoRESUMO
Tomato is cultivated worldwide as a nutrient-rich vegetable crop. Tomato wilt disease caused by Fusarium oxysporum f.sp. Lycopersici (Fol) is one of the most serious fungal diseases posing threats to tomato production. Recently, the development of Spray-Induced Gene Silencing (SIGS) directs a novel plant disease management by generating an efficient and environmental friendly biocontrol agent. Here, we characterized that FolRDR1 (RNA-dependent RNA polymerase 1) mediated the pathogen invasion to the host plant tomato, and played as an essential regulator in pathogen development and pathogenicity. Our fluorescence tracing data further presented that effective uptakes of FolRDR1-dsRNAs were observed in both Fol and tomato tissues. Subsequently, exogenous application of FolRDR1-dsRNAs on pre-Fol-infected tomato leaves resulted in significant alleviation of tomato wilt disease symptoms. Particularly, FolRDR1-RNAi was highly specific without sequence off-target in related plants. Our results of pathogen gene-targeting RNAi have provided a new strategy for tomato wilt disease management by developing an environmentally-friendly biocontrol agent.
Assuntos
Fusarium , Solanum lycopersicum , Interferência de RNA , Solanum lycopersicum/genética , Inativação Gênica , Fusarium/genética , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologiaRESUMO
SignificanceBased on the analysis of three thermodynamic parameters of various M-S systems (solubility of metal sulfides [MxSy] in aqueous solution, volume change of the metal-sulfur [M-S] battery system, and the potential of S/MxSy cathode redox couple), an aqueous Pb-S battery operated by synergistic dual conversion reactions (cathode: SâPbS, anode: Pb2+âPbO2) has been officially reported. Benefitting from the inherent insolubility of PbS and a conversion-type counter electrode, the aqueous Pb-S battery exhibited two advantages: it is shuttle effect free and has a dendrite-free nature. Moreover, the practical value of the Pb-S battery was further certified by the prototype S|Pb(NO3)2ÇZn(NO3)2|Zn hybrid cell, which afforded an energy density of 930.9 Wh kg-1sulfur.
RESUMO
Glucagon-like peptide-1 receptor agonists (GLP-1RAs), which are drugs used for treating type 2 diabetes, have been reported to exert anti-inflammatory effects on inflammatory bowel disease (IBD), the mechanism of which remains elusive. Here, we report that GLP-1RAs ameliorate dextran sulfate sodium (DSS)-induced colitis in both wild-type and T/B-cell-deficient mice through modulating group 3 innate lymphoid cells (ILC3s), a subset of innate lymphoid cells that regulate intestinal immunity. GLP-1RAs promote IL-22 production by ILC3, and the protective effect of GLP-1RAs on DSS-induced colitis was abrogated in ILC3-deficient RORgtgfp/gfp mice. Furthermore, the treatment effect of GLP-RAs on colitis, as well as the generation of IL-22-producing ILC3s by GLP-RAs, is dependent on the gut microbiota. GLP-1RAs increase the abundance of Firmicutes and Proteobacteria in the gut, particularly beneficial bacteria such as Lactobacillus reuteri, and decrease the abundance of enteropathogenic Staphylococcus bacteria. The untargeted gas chromatography (GC)/liquid chromatography (LC)-mass spectrometry (MS) of faecal metabolites further revealed enrichment of N,N-dimethylsphingosine (DMS), an endogenous metabolite derived from sphingosine, in the GLP-1RA-treated group. Strikingly, DMS ameliorates colitis while promoting intestinal IL-22-producing ILC3s. Taken together, our findings show that GLP-1RAs exert a therapeutic effect on colitis possibly by regulating the microbiota-DMS-IL-22+ILC3 axis, highlighting the potential beneficial role of GLP-RAs in inflammatory intestinal disorders with diabetes complications.
Assuntos
Colite , Sulfato de Dextrana , Microbioma Gastrointestinal , Receptor do Peptídeo Semelhante ao Glucagon 1 , Imunidade Inata , Interleucina 22 , Linfócitos , Animais , Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Colite/imunologia , Colite/tratamento farmacológico , Colite/metabolismo , Colite/induzido quimicamente , Camundongos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Imunidade Inata/efeitos dos fármacos , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Interleucinas/metabolismo , Camundongos Knockout , Colo/imunologia , Colo/microbiologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Agonistas do Receptor do Peptídeo 1 Semelhante ao GlucagonRESUMO
Luminescent covalent organic frameworks (LCOFs) have emerged as indispensable candidates in various applications due to their greater tunable emitting properties and structural robustness compared to small molecule emitters. An unsolved issue in this area is developing highly luminescent LCOFs of which the nonradiative quenching pathways were suppressed as much as possible. Here, a robust aminal-linked COF (DD-COF) possessing perdeuterated light-emitting monomers was designed and synthesized. The solid-state photoluminescence quantum yield of the DD-COF reaches 81%, significantly outcompeting all state-of-the-art LCOFs reported so far. The exceptional luminescent efficiency is attributed to the inhibition of different pathways of nonradiative decay, especially from bond vibrations where only substitution by a heavier isotope with a lower zero-point vibration frequency works. Furthermore, the prepared deuterated COF not only boosts higher photostability under UV irradiation but also enables superior fluorescence sensing performance for iodine detection compared to nondeuterated COF.
RESUMO
Sodium-potassium (NaK) alloy electrodes are ideal for next-generation dendrite-free alkali metal electrodes due to their dendrite-free nature. However, issues such as slow diffusion kinetics due to the large K+ radius and the loss of active potassium during the reaction severely limit its application. Here a novel cobalt/nitrogen-doped carbon material is designed and it is applied to the construction of a NaK alloy electrode. The experimental and theoretical results indicate that the confining effect of the nitrogen-doped graphitic carbon layer can protect the cobalt nanoparticles from corrosion leaching, while the presence of CoâNx bonds and cobalt nanoparticles provides more active sites for the reaction, realizing the synergistic effect of adsorption-catalytic modulation, lowering the K+ diffusion energy barrier and promoting charge transfer and ion diffusion. The application of this electrode to a symmetrical battery can achieve more than 1800 stable cycles under a current density of 0.4 mA cm-2 and a charge/discharge specific capacity of 122.64 mAh g-1 under a current of 0.5C in a full battery. This finding provides a new idea to realize a fast, stable, and efficient application of NaK alloy electrodes.
RESUMO
Autoimmune diseases (AIDs) arise from a breakdown in immunological self-tolerance, wherein the adaptive immune system mistakenly attacks healthy cells, tissues and organs. AIDs impose excessive treatment costs and currently rely on non-specific and universal immunosuppression, which only offer symptomatic relief without addressing the underlying causes. AIDs are driven by autoantigens, targeting the autoantigens holds great promise in transforming the treatment of these diseases. To achieve this goal, a comprehensive understanding of the pathogenic mechanisms underlying different AIDs and the identification of specific autoantigens are critical. In this review, we categorize AIDs based on their underlying causes and compile information on autoantigens implicated in each disease, providing a roadmap for the development of novel immunotherapy regimens. We will focus on type 1 diabetes (T1D), which is an autoimmune disease characterized by irreversible destruction of insulin-producing ß cells in the Langerhans islets of the pancreas. We will discuss insulin as possible autoantigen of T1D and its role in T1D pathogenesis. Finally, we will review current treatments of TID and propose a potentially effective immunotherapy targeting autoantigens.
Assuntos
Autoantígenos , Doenças Autoimunes , Diabetes Mellitus Tipo 1 , Descoberta de Drogas , Insulina , Humanos , Autoantígenos/imunologia , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/imunologia , Insulina/imunologiaRESUMO
Chromatin remodelers have been thought to be crucial in creating an accessible chromatin environment before transcription activation. However, it is still unclear how chromatin remodelers recognize and bind to the active regions. In this study, we found that chromatin remodelers SPLAYED (SYD) and BRAHMA (BRM) interact and co-occupy with Suppressor of Ty6-like (SPT6L), a core subunit of the transcription machinery, at thousands of the transcription start sites (TSS). The association of SYD and BRM to chromatin is dramatically reduced in spt6l and can be restored mainly by SPT6LΔtSH2, which binds to TSS in a RNA polymerase II (Pol II)-independent manner. Furthermore, SPT6L and SYD/BRM are involved in regulating the nucleosome and Pol II occupancy around TSS. The presence of SPT6L is sufficient to restore the association of the chromatin remodeler SYD to chromatin and maintain normal nucleosome occupancy. Our findings suggest that the two chromatin remodelers can form protein complexes with the core subunit of the transcription machinery and regulate nucleosome occupancy in the early transcription stage.
Assuntos
Adenosina Trifosfatases , Proteínas de Arabidopsis , Arabidopsis , Sítio de Iniciação de Transcrição , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica de Plantas , Nucleossomos/genética , Nucleossomos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Ear keloids are pathologic scar hyperplasia in the ear region. The most therapeutic approach was surgical shave excision with radiation therapy. However, radiation therapy is easily delivered to healthy surrounding tissues. In the last years, injections with botulinum toxin type A (BTX-A) have been proven to improve surgical scars effectively in clinical trials. This study aimed to evaluate the effect of immediate injections of BTX-A after surgical excision for ear keloids. METHODS: From January 2020 to January 2023, 33 consecutive patients with ear keloids were enrolled. All patients underwent scar excision and revision at the same time when they needed BTX-A. It was injected into surgical wound closure immediately after surgery. The results of this study were evaluated at follow-up from 7 to 18 months using the Vancouver Scar Scale (VSS) and the Visual Analogue Scale (VAS). RESULTS: From January 2020 to January 2023, 33 patients received concomitant therapy of immediate injections of BTX-A after surgery for ear keloids. The patients were evaluated at follow-ups lasting 7 to 18 months. Only one case recurred within the follow-up period, and no adverse effects were reported. CONCLUSION: This study demonstrates that significant cosmetic outcomes in ear keloid treatment were achieved after early postsurgical BTX-A injections. The patients reported high satisfaction and few complications.
RESUMO
OBJECTIVE: The authors compared the effect of 2 insertion methods, namely the conventional laryngeal mask airway (LMA) insertion and the index finger-assisted LMA insertion, on the incidence of complications associated with LMA Protector insertion. METHODS: The authors enrolled 300 patients, who underwent painless bronchoscopy. The patients ranged in age between 18 and 75 and were classified as American Society of Anesthesiologists grade I to III. They were randomly divided into 2 groups: a control group of 150 patients and an assisted group comprising 150 patients. LMA was inserted using the conventional and index finger-assisted insertion methods in both groups, respectively. The primary outcome was postoperative complications, such as oral mucosal injury and pharyngeal pain. Secondary outcomes included the success rate of first-time insertion, the incidence rate of inverse folding of LMA tips, oropharyngeal leak pressure (OLP), and other postoperative complications. RESULTS: Compared with the conventional LMA insertion method, index finger-assisted LMA insertion can significantly reduce the incidence rate of oral mucosal injury and pharyngeal pain, with fewer insertion failures. There was a statistically significant difference between the 2 groups in the visual field grading before adjustment for LMA alignment (P<0.0001). The conventional insertion method increased the likelihood of inverse folding of LMA tips. When the conventional insertion method was utilized, there was a significant difference in airway pressure and tidal volume before and after alignment under a fiberoptic bronchoscope (P<0.0001), but no significant difference in visual field grading and respiratory mechanics-related indicators. CONCLUSIONS: Index finger-assisted insertion can significantly reduce the incidence rate of LMA Protector-related complications and inverse folding of LMA tips.
RESUMO
The present study aims to investigate the production of ketone body in the liver of mice after 6 weeks of high-intensity interval training (HIIT) intervention and explore the possible mechanisms. Male C57BL/6J mice (7-week-old) were randomly divided into control and HIIT groups. The control group did not engage in exercise, while the HIIT group underwent a 6-week HIIT (10° slope treadmill exercise). Changes in weight and body composition were recorded, and blood ketone body levels were measured before, immediately after, and 1 h after each HIIT exercise. After 6-week HIIT, the levels of free fatty acids in the liver and serum were detected using reagent kits, and expression levels of regulatory factors and key enzymes of ketone body production in the mouse liver were detected by Western blot and qPCR. The results showed that, the blood ketone body levels in the HIIT group significantly increased immediately after a single HIIT and 1 h after HIIT, compared with that before HIIT. The body weight of the control group gradually increased within 6 weeks, while the HIIT group mice did not show significant weight gain. After 6-week HIIT, compared with the control group, the HIIT group showed decreased body fat ratio, increased lean body weight ratio, and increased free fatty acid levels in liver and serum. Liver carnitine palmitoyl transferase-I (CPT-I), peroxisome proliferator activated receptor α (PPARα), and fibroblast growth factor 21 (FGF21) protein expression levels were up-regulated, whereas mammalian target of rapamycin complex 1 (mTORC1) protein expression level was significantly down-regulated in the HIIT group, compared with those in the control group. These results suggest that HIIT induces hepatic ketone body production through altering mTORC1, PPARα and FGF21 expression in mice.
Assuntos
Fatores de Crescimento de Fibroblastos , Treinamento Intervalado de Alta Intensidade , Corpos Cetônicos , Fígado , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Endogâmicos C57BL , PPAR alfa , Condicionamento Físico Animal , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/sangue , Masculino , Camundongos , PPAR alfa/metabolismo , Corpos Cetônicos/metabolismo , Treinamento Intervalado de Alta Intensidade/métodos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fígado/metabolismo , Condicionamento Físico Animal/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Complexos Multiproteicos/metabolismoRESUMO
Hepatocyte nuclear factor 1α (HNF1α) is a transcription factor that is crucial for the regulation to maintain the function of pancreatic ß-cell, hepatic lipid metabolism, and other processes. Mature-onset diabetes of the young type 3 is a monogenic form of diabetes caused by HNF1α mutations. Although several mutation sites have been reported, the specific mechanisms remain unclear, such hot-spot mutation as the P291fsinsC mutation and the P112L mutation and so on. In preliminary studies, we discovered one MODY3 patient carrying a mutation at the c.493T>C locus of the HNF1α gene. In this study, we analyzed the pathogenic of the mutation sites by using the Mutation Surveyor software and constructed the eukaryotic expression plasmids of the wild-type and mutant type of HNF1α to detect variations in the expression levels and stability of HNF1α protein by using Western blot. The analyses of the Mutation Surveyor software showed that the c.493T>C site mutation may be pathogenic gene and the results of Western blot showed that both the amount and stability of HNF1α protein expressed by the mutation type plasmid were reduced significantly compared to those by the wild type plasmid (P<0.05). This study suggests that the c.493T>C (p.Trp165Arg) mutation dramatically impacts HNF1α expression, which might be responsible for the development of the disease and offers fresh perspectives for the following in-depth exploration of MODY3's molecular pathogenic process.
Assuntos
Diabetes Mellitus Tipo 2 , Fator 1-alfa Nuclear de Hepatócito , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Células Secretoras de Insulina/metabolismo , MutaçãoRESUMO
The 21st century is a highly information-driven era, and traditional Chinese medicine(TCM) pharmacy is also moving towards digitization and informatization. New technologies such as artificial intelligence and big data with information technology as the core are being integrated into various aspects of drug research, manufacturing, evaluation, and application, promoting interaction between these stages and improving the quality and efficiency of TCM preparations. This, in turn, provides better healthcare services to the general population. The deep integration of emerging technologies such as artificial intelligence, big data, and cloud computing with the TCM pharmaceutical industry will innovate TCM pharmaceutical technology, accelerate the research and industrialization process of TCM pharmacy, provide cutting-edge technological support to the global scientific community, boost the efficiency of the TCM industry, and promote economic and social development. Drawing from recent developments in TCM pharmacy in China, this paper discussed the current research status and future trends in digital TCM pharmacy, aiming to provide a reference for future research in this field.
Assuntos
Medicamentos de Ervas Chinesas , Farmácia , Humanos , Medicina Tradicional Chinesa , Inteligência Artificial , Tecnologia Farmacêutica , Indústria FarmacêuticaRESUMO
Prussian blue analogues are highly promising electrode materials due to their versatile electrochemical activity and low cost. However, they often suffer from severe structural damage caused by the Jahn-Teller distortion and dissolution of high-spin outer metal ions, resulting in poor cycle life. Material modification and electrolyte regulation have been the common approaches to address this issue, albeit with very limited success. We report here a novel and efficient strategy to preserve structural stability by co-inserting Co2+ and Zn2+ ions in KCo[Fe(CN)6]. This co-insertion induced a spontaneous and reversible phase conversion by the replacement of low-spin inner ion (Fe3+), which efficiently relieves structural damage caused by Jahn-Teller distortion and metal-ion dissolution, leading to an outstanding Zn2+ storage capacity and an exceptional improvement of cycle life with a capacity retention of 97.7% over 4400 cycles at 40 C. We also demonstrated the enhancement of co-intercalation on ion migration using a combined approach of experimental and density functional theory (DFT) calculations. This work provides an important progress to solve the cycle stability of Prussian blue analogues towards their practical application as electrode materials for aqueous batteries.
RESUMO
Revealing the mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry and cell-to-cell spread might provide insights for understanding the underlying mechanisms of viral pathogenesis, tropism, and virulence. The signaling pathways involved in SARS-CoV-2 entry and viral spike-mediated cell-to-cell fusion remain elusive. In the current study, we found that macropinocytosis inhibitors significantly suppressed SARS-CoV-2 infection at both the entry and viral spike-mediated cell-to-cell fusion steps. We demonstrated that SARS-CoV-2 entry required the small GTPase Rac1 and its effector kinase p21-activated kinase 1 by dominant-negative and RNAi assays in human embryonic kidney 293T-angiotensin-converting enzyme 2 cells and that the serine protease transmembrane serine protease 2 reversed the decrease in SARS-CoV-2 entry caused by the macropinocytosis inhibitors. Moreover, in the cell-to-cell fusion assay, we confirmed that macropinocytosis inhibitors significantly decreased viral spike-mediated cell-to-cell fusion. Overall, we provided evidence that SARS-CoV-2 utilizes a macropinocytosis pathway to enter target cells and to efficiently promote viral spike-mediated cell-to-cell fusion.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Fusão Celular , Internalização do Vírus , Serina ProteasesRESUMO
Defects in metal-organic frameworks (MOFs) can significantly change their local microstructures, thus notably leading to an alteration-induced performance in sorption or catalysis. However, achieving de novo defect engineering in MOFs under ambient conditions without the scarification of their crystallinity remains a challenge. Herein, we successfully synthesize defective ZIF-7 through 60Co gamma ray radiation under ambient conditions. The obtained ZIF-7 is defect-rich but also has excellent crystallinity, enhanced BET surface area, and hierarchical pore structure. Moreover, the amount and structure of these defects within ZIF-7 were determined from the two-dimensional (2D) 13C-1H frequency-switched Lee-Goldburg heteronuclear correlation (FSLG-HETCOR) spectra, continuous rotation electron diffraction (cRED), and high-resolution transmission electron microscopy (HRTEM). Interestingly, the defects in ZIF-7 all strongly bind to CO2, leading to a remarkable enhancement of the CO2 sorption capability compared with that synthesized by the solvothermal method.