Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35408184

RESUMO

OBJECTIVE: The cast-in-place steel spring floating slab track (SSFST) is difficult to maintain and repair, while the mechanical strength of the end of the traditional prefabricated SSFST is poor. In order to overcome the above shortcomings, a shear-hinge-combined prefabricated SSFST was developed, and an indoor test was carried out to analyze its vibration-damping effect. METHODS: A combined shear hinge SSFST connection model with two length sizes was established. The dynamic response amplitude and frequency response characteristics of the foundation (ground) under different isolator installations and fatigue loads were studied, and the vibration-damping performance of two sizes of combined shear hinge SSFST was evaluated. RESULTS: The vibration-damping effect of the steel spring vibration isolator mainly acts in the middle and low-frequency bands of 16-400 Hz, and the vibration near 10 Hz will be aggravated after the vibration isolator is installed. The vibration index and variation law of the two sizes of SSFST are similar, and the vibration response of 4.8 m SSFST is slightly less than 3.6 m SSFST. There is almost no change in each index when the load is 5 million times, and there is a certain range of change when the load is 10 million times, but the overall change is small. CONCLUSIONS: The combined shear hinge prefabricated SSFST can have an excellent isolation effect on vibration and can still maintain good vibration-damping ability within 10 million fatigue loads (about 5 years); 4.8 m SSFST should be laid in straight sections with higher train speeds, while 3.6 m SSFST should be applied in curved sections to ensure smooth lines.

2.
Materials (Basel) ; 15(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35160717

RESUMO

The CRTS I type double-block ballastless track (CRTS I TDBBT) has the advantages of convenient construction and low cost, but it has low crack resistance and the temperature field distribution of the railway on the bridge is uneven and frequently changes, so it is necessary to study the mechanical properties of the CRTS I TDBBT under the load of a temperature field. The temperature field model of the CRTS I TDBBT on the bridge is established by finite element software, the real-time temperature field of the track bed slab is brought into the coupled model as a load, and the variation laws of the temperature stress of the CRTS I TDBBT under different schemes are compared. The temperature gradient in the CRTS I TDBBT track bed slab has the largest fluctuation range, and the positive and negative temperature gradient range can reach 93.34 °C. For the temperature longitudinal stress around the sleeper block of the track bed slab, the edge is the largest; the temperature longitudinal stress is reduced by at most 5.27% after the anti-cracking diagonal bars are added. When the expansion joint is added, the temperature stress can be reduced by up to 80.29%. The fluctuation range of the temperature gradient of the track bed is basically consistent with the fluctuation range of the local air temperature. The huge temperature difference leads to the occurrence of cracks in the track structure, and cracks are more likely to occur at the corners of the sleeper block. The addition of both anti-crack diagonal bars and expansion joints has an anti-crack effect, but the effect of adding expansion joints is better.

3.
Sci Prog ; 104(2): 368504211028369, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34191647

RESUMO

To study subway turnouts' adaptability to steep gradients, a finite element model of a metro No. 9 simple turnout was established. The main works include: (1) The train's most unfavourable loading condition was modelled. (2) The turnout's longitudinal displacement and stress were analysed with different gradients under the train braking load, temperature change load and a combination of the two, to determine the structure's safety and stability under the most unfavourable working conditions. (3) The turnout structure's cumulative longitudinal deformation under reciprocating load was studied. Both a fastener longitudinal resistance-displacement experiment under reciprocating load and a numerical simulation of No. 9 turnout modelled by the finite element modelling software, ANSYS, were carried out to study the gradient's influence on the turnout's longitudinal mechanical characteristics. (1) The turnout's longitudinal displacement and stress increase linearly with an increase in gradient and temperature change, both of which are unfavourable to the turnout structure. As the gradient increases from 0‰ to 30‰, the longitudinal stress and displacement increase by more than 10%. (2) The turnout's rail strength and displacement on a 30‰ slope under the most unfavourable load conditions are within the specification limitations. (3) Under reciprocating load, the fastener longitudinal stiffness decreases and the maximum and residual longitudinal displacement of the switch rail increase; an increased gradient intensifies these effects on the turnout.


Assuntos
Ferrovias
4.
Sci Prog ; 104(4): 368504211036330, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34644204

RESUMO

Low-Vibration Tracks (LVTs) are widely used in subway tunnels for their excellent performance, but the application in heavy-duty railways still requires a lot of feasibility studies. In this study, the statics performance of LVT under different axle loads, load direction, and load position is explored using the finite element software Abaqus. The Timoshenk beam element and nonlinear spring element 3D solid element are used to represent rails, fasteners, and the other track structure respectively. The paper established the finite element model of LVT to study the mechanical characteristics of low vibration track structure under varying loading condition. The applied loads are determined according to the Heavy-Haul Railway Track Structure Design Code. The results shows: (1) The deformation and stress of the LVT structure show a linear relationship with the increase of the axle load. (2) Slab end loading and lateral load are more unfavorable to the stress and deformation of the track structure. When slab end is loaded with vertical load, the vertical load is distributed on four supporting blocks along the longitudinal direction with a ratio of 1:4:4:1, and the lateral direction is mainly borne by two adjacent fastener nodes with the total load proportion of 47% and 47% respectively. (3) The LVT structure can guarantee the safety of static performance under 30 t axle load and the maximum axle load should not exceed 36 t. The paper provides a guideline for the construction and maintenance of LVT structure in heavy haul railway.

5.
Sci Prog ; 103(2): 36850420927249, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32539630

RESUMO

In this paper, a full-scale model of Low Vibration Track was established and three working conditions were applied to a single bearing block; these include: vertical load at the end of the track slab, combination of horizontal and vertical load at the end of the track slab, and vertical load at the middle of the track slab. By applying four times static wheel load to the full-scale model, the relationship between the stress of the track structure and the load under different working conditions was investigated. The corresponding load values were obtained when the track slab and the bearing block reached the axial tensile strength of the concrete. Through the static load test, the weak position of the track structure was found, and the development trend of the crack was obtained. (1) Obtained the maximum stress of the concrete of the track slab at the corner of the bearing block, the maximal stress of the concrete of the track slab, the stress at the bottom of the bearing block, and the stress at the bottom of the bearing block under different working conditions. (2) The horizontal load of the train increased the force of the track slab concrete at the corners of the bearing block. (3) Compared the strain of different location of the track slab and different working conditions. (4) Observed the positions of slight crack and its development trend appeared on track slabs in different working conditions. (5) For the weak part of the track structure, it can be improved by measures such as increasing the thickness of the end of the track slab and arranging stirrups in the track slab around the support block. The research results provide reference for the design, application and maintenance of Low Vibration Track in the heavy-haul railway tunnel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA