Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biochem Biophys Res Commun ; 682: 91-96, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37804592

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels composed of five homologous subunits. The homopentameric α7-nAChR, abundantly expressed in the brain, is involved in the regulation of the neuronal plasticity and memory and undergoes phosphorylation by protein kinase A (PKA). Here, we extracted native α7-nAChR from murine brain, validated its assembly by cryo-EM and showed that phosphorylation by PKA in vitro enables its interaction with the abundant human brain protein 14-3-3ζ. Bioinformatic analysis narrowed the putative 14-3-3-binding site down to the fragment of the intracellular loop (ICL) containing Ser365 (Q361RRCSLASVEMS372), known to be phosphorylated in vivo. We reconstructed the 14-3-3ζ/ICL peptide complex and determined its structure by X-ray crystallography, which confirmed the Ser365 phosphorylation-dependent canonical recognition of the ICL by 14-3-3. A common mechanism of nAChRs' regulation by ICL phosphorylation and 14-3-3 binding that potentially affects nAChR activity, stoichiometry, and surface expression is suggested.


Assuntos
Proteínas 14-3-3 , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Humanos , Camundongos , Proteínas 14-3-3/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Sítios de Ligação , Citoplasma/metabolismo , Receptores Nicotínicos/metabolismo
2.
Mar Drugs ; 20(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36005506

RESUMO

Three-finger proteins (TFPs) are small proteins with characteristic three-finger ß-structural fold stabilized by the system of conserved disulfide bonds. These proteins have been found in organisms from different taxonomic groups and perform various important regulatory functions or act as components of snake venoms. Recently, four TFPs (Lystars 1-4) with unknown function were identified in the coelomic fluid proteome of starfish A. rubens. Here we analyzed the genomes of A. rubens and A. planci starfishes and predicted additional five and six proteins containing three-finger domains, respectively. One of them, named Lystar5, is expressed in A. rubens coelomocytes and has sequence homology to the human brain neuromodulator Lynx2. The three-finger structure of Lystar5 close to the structure of Lynx2 was confirmed by NMR. Similar to Lynx2, Lystar5 negatively modulated α4ß2 nicotinic acetylcholine receptors (nAChRs) expressed in X. laevis oocytes. Incubation with Lystar5 decreased the expression of acetylcholine esterase and α4 and α7 nAChR subunits in the hippocampal neurons. In summary, for the first time we reported modulator of the cholinergic system in starfish.


Assuntos
Asterias , Receptores Nicotínicos , Animais , Asterias/metabolismo , Encéfalo/metabolismo , Humanos , Neurotransmissores , Receptores Nicotínicos/metabolismo , Estrelas-do-Mar/metabolismo , Xenopus laevis/metabolismo
3.
J Neurochem ; 155(1): 45-61, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32222974

RESUMO

Lynx1 is a GPI-tethered protein colocalized with nicotinic acetylcholine receptors (nAChRs) in the brain areas important for learning and memory. Previously, we demonstrated that at low micromolar concentrations the water-soluble Lynx1 variant lacking GPI-anchor (ws-Lynx1) acts on α7-nAChRs as a positive allosteric modulator. We hypothesized that ws-Lynx1 could be used for improvement of cognitive processes dependent on nAChRs. Here we showed that 2 µM ws-Lynx1 increased the acetylcholine-evoked current at α7-nAChRs in the rat primary visual cortex L1 interneurons. At higher concentrations ws-Lynx1 inhibits α7-nAChRs expressed in Xenopus laevis oocytes with IC50  ~ 50 µM. In mice, ws-Lynx1 penetrated the blood-brain barrier upon intranasal administration and accumulated in the cortex, hippocampus, and cerebellum. Chronic ws-Lynx1 treatment prevented the olfactory memory and motor learning impairment induced by the α7-nAChRs inhibitor methyllycaconitine (MLA). Enhanced long-term potentiation and increased paired-pulse facilitation ratio were observed in the hippocampal slices incubated with ws-Lynx1 and in the slices from ws-Lynx1-treated mice. Long-term potentiation blockade observed in MLA-treated mice was abolished by ws-Lynx1 co-administration. To understand the mechanism of ws-Lynx1 action, we studied the interaction of ws-Lynx1 and MLA at α7-nAChRs, measured the basal concentrations of endogenous Lynx1 and the α7 nAChR subunit and their association in the mouse brain. Our findings suggest that endogenous Lynx1 limits α7-nAChRs activation in the adult brain. Ws-Lynx1 partially displaces Lynx1 causing positive modulation of α7-nAChRs and enhancement of synaptic plasticity. Ws-Lynx1 and similar compounds may constitute useful hits for treatment of cognitive deficits associated with the cholinergic system dysfunction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Inibidores da Colinesterase/toxicidade , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/psicologia , Plasticidade Neuronal/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Acetilcolina/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/farmacocinética , Alcaloides/farmacologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/metabolismo , Disfunção Cognitiva/induzido quimicamente , Interneurônios/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Olfato/efeitos dos fármacos , Córtex Visual/efeitos dos fármacos , Xenopus laevis
4.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019770

RESUMO

Ly-6/uPAR or three-finger proteins (TFPs) contain a disulfide-stabilized ß-structural core and three protruding loops (fingers). In mammals, TFPs have been found in epithelium and the nervous, endocrine, reproductive, and immune systems. Here, using heteronuclear NMR, we determined the three-dimensional (3D) structure and backbone dynamics of the epithelial secreted protein SLURP-1 and soluble domains of GPI-anchored TFPs from the brain (Lynx2, Lypd6, Lypd6b) acting on nicotinic acetylcholine receptors (nAChRs). Results were compared with the data about human TFPs Lynx1 and SLURP-2 and snake α-neurotoxins WTX and NTII. Two different topologies of the ß-structure were revealed: one large antiparallel ß-sheet in Lypd6 and Lypd6b, and two ß-sheets in other proteins. α-Helical segments were found in the loops I/III of Lynx2, Lypd6, and Lypd6b. Differences in the surface distribution of charged and hydrophobic groups indicated significant differences in a mode of TFPs/nAChR interactions. TFPs showed significant conformational plasticity: the loops were highly mobile at picosecond-nanosecond timescale, while the ß-structural regions demonstrated microsecond-millisecond motions. SLURP-1 had the largest plasticity and characterized by the unordered loops II/III and cis-trans isomerization of the Tyr39-Pro40 bond. In conclusion, plasticity could be an important feature of TFPs adapting their structures for optimal interaction with the different conformational states of nAChRs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Antígenos Ly/química , Proteínas Ligadas por GPI/química , Neuropeptídeos/química , Receptores Nicotínicos/química , Ativador de Plasminogênio Tipo Uroquinase/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Antígenos Ly/genética , Antígenos Ly/metabolismo , Sítios de Ligação , Clonagem Molecular , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
5.
Biochemistry ; 56(34): 4468-4477, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28749688

RESUMO

Today, recombinant proteins are quite widely used in biomedical and biotechnological applications. At the same time, the question about their full equivalence to the native analogues remains unanswered. To gain additional insight into this problem, intimate atomistic details of a relatively simple protein, small and structurally rigid recombinant cardiotoxin I (CTI) from cobra Naja oxiana venom, were characterized using nuclear magnetic resonance (NMR) spectroscopy and atomistic molecular dynamics (MD) simulations in water. Compared to the natural protein, it contains an additional Met residue at the N-terminus. In this work, the NMR-derived spatial structure of uniformly 13C- and 15N-labeled CTI and its dynamic behavior were investigated and subjected to comparative analysis with the corresponding data for the native toxin. The differences were found in dihedral angles of only a single residue, adjacent to the N-terminal methionine. Microsecond-long MD traces of the toxins reveal an increased flexibility in the residues spatially close to the N-Met. As the detected structural and dynamic changes of the two CTI models do not result in substantial differences in their cytotoxicities, we assume that the recombinant protein can be used for many purposes as a reasonable surrogate of the native one. In addition, we discuss general features of the spatial organization of cytotoxins, implied by the results of the current combined NMR and MD study.


Assuntos
Venenos Elapídicos/química , Elapidae , Simulação de Dinâmica Molecular , Animais , Venenos Elapídicos/genética , Venenos Elapídicos/metabolismo , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
J Biol Chem ; 290(39): 23616-30, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26242733

RESUMO

Weak toxin from Naja kaouthia (WTX) belongs to the group of nonconventional "three-finger" snake neurotoxins. It irreversibly inhibits nicotinic acetylcholine receptors and allosterically interacts with muscarinic acetylcholine receptors (mAChRs). Using site-directed mutagenesis, NMR spectroscopy, and computer modeling, we investigated the recombinant mutant WTX analogue (rWTX) which, compared with the native toxin, has an additional N-terminal methionine residue. In comparison with the wild-type toxin, rWTX demonstrated an altered pharmacological profile, decreased binding of orthosteric antagonist N-methylscopolamine to human M1- and M2-mAChRs, and increased antagonist binding to M3-mAChR. Positively charged arginine residues located in the flexible loop II were found to be crucial for rWTX interactions with all types of mAChR. Computer modeling suggested that the rWTX loop II protrudes to the M1-mAChR allosteric ligand-binding site blocking the entrance to the orthosteric site. In contrast, toxin interacts with M3-mAChR by loop II without penetration into the allosteric site. Data obtained provide new structural insight into the target-specific allosteric regulation of mAChRs by "three-finger" snake neurotoxins.


Assuntos
Venenos Elapídicos/química , Neurotoxinas/metabolismo , Receptores Muscarínicos/metabolismo , Sequência de Aminoácidos , Animais , Elapidae , Dados de Sequência Molecular , Mutagênese Insercional , Neurotoxinas/química , Neurotoxinas/genética , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos
7.
Biochim Biophys Acta ; 1838(1 Pt B): 164-72, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24036227

RESUMO

Knowledge of the energetic parameters of transmembrane helix-helix interactions is necessary for the establishment of a structure-energy relationship for α-helical membrane domains. A number of techniques have been developed to measure the free energies of dimerization and oligomerization of transmembrane α-helices, and all of these have their advantages and drawbacks. In this study we propose a methodology to determine the magnitudes of the free energy of interactions between transmembrane helices in detergent micelles. The suggested approach employs solution nuclear magnetic resonance (NMR) spectroscopy to determine the population of the oligomeric states of the transmembrane domains and introduces a new formalism to describe the oligomerization equilibrium, which is based on the assumption that both the dimerization of the transmembrane domains and the dissociation of the dimer can occur only upon the collision of detergent micelles. The technique has three major advantages compared with other existing approaches: it may be used to analyze both weak and relatively strong dimerization/oligomerization processes, it works well for the analysis of complex equilibria, e.g. when monomer, dimer and high-order oligomer populations are simultaneously present in the solution, and it can simultaneously yield both structural and energetic characteristics of the helix-helix interaction under study. The proposed methodology was applied to investigate the oligomerization process of transmembrane domains of fibroblast growth factor receptor 3 (FGFR3) and vascular endothelium growth factor receptor 2 (VEGFR2), and allowed the measurement of the free energy of dimerization of both of these objects. In addition the proposed method was able to describe the multi-state oligomerization process of the VEGFR2 transmembrane domain.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Oligopeptídeos/química , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Sequência de Aminoácidos , Sítios de Ligação , Detergentes/química , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Cinética , Micelas , Modelos Químicos , Dados de Sequência Molecular , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Soluções , Termodinâmica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
J Biol Chem ; 288(22): 15888-99, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23585571

RESUMO

Human LYNX1, belonging to the Ly6/neurotoxin family of three-finger proteins, is membrane-tethered with a glycosylphosphatidylinositol anchor and modulates the activity of nicotinic acetylcholine receptors (nAChR). Recent preparation of LYNX1 as an individual protein in the form of water-soluble domain lacking glycosylphosphatidylinositol anchor (ws-LYNX1; Lyukmanova, E. N., Shenkarev, Z. O., Shulepko, M. A., Mineev, K. S., D'Hoedt, D., Kasheverov, I. E., Filkin, S. Y., Krivolapova, A. P., Janickova, H., Dolezal, V., Dolgikh, D. A., Arseniev, A. S., Bertrand, D., Tsetlin, V. I., and Kirpichnikov, M. P. (2011) NMR structure and action on nicotinic acetylcholine receptors of water-soluble domain of human LYNX1. J. Biol. Chem. 286, 10618-10627) revealed the attachment at the agonist-binding site in the acetylcholine-binding protein (AChBP) and muscle nAChR but outside it, in the neuronal nAChRs. Here, we obtained a series of ws-LYNX1 mutants (T35A, P36A, T37A, R38A, K40A, Y54A, Y57A, K59A) and examined by radioligand analysis or patch clamp technique their interaction with the AChBP, Torpedo californica nAChR and chimeric receptor composed of the α7 nAChR extracellular ligand-binding domain and the transmembrane domain of α1 glycine receptor (α7-GlyR). Against AChBP, there was either no change in activity (T35A, T37A), slight decrease (K40A, K59A), and even enhancement for the rest mutants (most pronounced for P36A and R38A). With both receptors, many mutants lost inhibitory activity, but the increased inhibition was observed for P36A at α7-GlyR. Thus, there are subtype-specific and common ws-LYNX1 residues recognizing distinct targets. Because ws-LYNX1 was inactive against glycine receptor, its "non-classical" binding sites on α7 nAChR should be within the extracellular domain. Micromolar affinities and fast washout rates measured for ws-LYNX1 and its mutants are in contrast to nanomolar affinities and irreversibility of binding for α-bungarotoxin and similar snake α-neurotoxins also targeting α7 nAChR. This distinction may underlie their different actions, i.e. nAChRs modulation versus irreversible inhibition, for these two types of three-finger proteins.


Assuntos
Proteínas de Peixes/química , Proteínas Ligadas por GPI/química , Receptores Nicotínicos/química , Torpedo , Proteínas Adaptadoras de Transdução de Sinal , Substituição de Aminoácidos , Animais , Bungarotoxinas/química , Bungarotoxinas/genética , Bungarotoxinas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Neurotoxinas/química , Neurotoxinas/genética , Neurotoxinas/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Receptor Nicotínico de Acetilcolina alfa7
9.
Biochim Biophys Acta ; 1828(2): 776-84, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23159810

RESUMO

Production of helical integral membrane proteins (IMPs) in a folded state is a necessary prerequisite for their functional and structural studies. In many cases large-scale expression of IMPs in cell-based and cell-free systems results in misfolded proteins, which should be refolded in vitro. Here using examples of the bacteriorhodopsin ESR from Exiguobacterium sibiricum and full-length homotetrameric K(+) channel KcsA from Streptomyces lividans we found that the efficient in vitro folding of the transmembrane domains of the polytopic and multimeric IMPs could be achieved during the protein encapsulation into the reconstructed high-density lipoprotein particles, also known as lipid-protein nanodiscs. In this case the self-assembly of the IMP/nanodisc complexes from a mixture containing apolipoprotein, lipids and the partially denatured protein solubilized in a harsh detergent induces the folding of the transmembrane domains. The obtained folding yields showed significant dependence on the properties of lipids used for nanodisc formation. The largest recovery of the spectroscopically active ESR (~60%) from the sodium dodecyl sulfate (SDS) was achieved in the nanodiscs containing anionic saturated lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPG) and was approximately twice lower in the zwitterionic DMPC lipid. The reassembly of tetrameric KcsA from the acid-dissociated monomer solubilized in SDS was the most efficient (~80%) in the nanodiscs containing zwitterionic unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). The charged and saturated lipids provided lower tetramer quantities, and the lowest yield (<20%) was observed in DMPC. The overall yield of the ESR and KcsA folding was mainly restricted by the efficiency of the protein encapsulation into the nanodiscs.


Assuntos
Proteínas de Bactérias/química , Lipídeos/química , Nanoestruturas/química , Canais de Potássio/química , Proteínas/química , Bactérias/metabolismo , Bacteriorodopsinas/metabolismo , Membrana Celular/metabolismo , Detergentes/química , Dimerização , Dimiristoilfosfatidilcolina/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Nanotecnologia/métodos , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Dodecilsulfato de Sódio/química , Streptomyces lividans/metabolismo
10.
Toxins (Basel) ; 15(6)2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37368679

RESUMO

Phα1ß (PnTx3-6) is a neurotoxin from the spider Phoneutria nigriventer venom, originally identified as an antagonist of two ion channels involved in nociception: N-type voltage-gated calcium channel (CaV2.2) and TRPA1. In animal models, Phα1ß administration reduces both acute and chronic pain. Here, we report the efficient bacterial expression system for the recombinant production of Phα1ß and its 15N-labeled analogue. Spatial structure and dynamics of Phα1ß were determined via NMR spectroscopy. The N-terminal domain (Ala1-Ala40) contains the inhibitor cystine knot (ICK or knottin) motif, which is common to spider neurotoxins. The C-terminal α-helix (Asn41-Cys52) stapled to ICK by two disulfides exhibits the µs-ms time-scale fluctuations. The Phα1ß structure with the disulfide bond patterns Cys1-5, Cys2-7, Cys3-12, Cys4-10, Cys6-11, Cys8-9 is the first spider knottin with six disulfide bridges in one ICK domain, and is a good reference to other toxins from the ctenitoxin family. Phα1ß has a large hydrophobic region on its surface and demonstrates a moderate affinity for partially anionic lipid vesicles at low salt conditions. Surprisingly, 10 µM Phα1ß significantly increases the amplitude of diclofenac-evoked currents and does not affect the allyl isothiocyanate (AITC)-evoked currents through the rat TRPA1 channel expressed in Xenopus oocytes. Targeting several unrelated ion channels, membrane binding, and the modulation of TRPA1 channel activity allow for considering Phα1ß as a gating modifier toxin, probably interacting with S1-S4 gating domains from a membrane-bound state.


Assuntos
Miniproteínas Nó de Cistina , Venenos de Aranha , Aranhas , Toxinas Biológicas , Ratos , Animais , Canal de Cátion TRPA1/genética , Aranhas/química , Neurotoxinas , Espectroscopia de Ressonância Magnética , Dissulfetos , Venenos de Aranha/farmacologia , Venenos de Aranha/química
11.
Protein J ; 42(4): 408-420, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37002449

RESUMO

Xanthorhodopsin (XR) from Salinibacter ruber is a light-driven proton pump containing retinal and a light-harvesting carotenoid antenna salinixanthin. Previous structure-functional studies of XR were conducted using a protein isolated from the native host only due to the absence of heterologous expression in Escherichia coli. In this paper, we describe cell-free synthesis and incorporation in lipid-protein nanodiscs of the recombinant XR that demonstrated its principal compatibility with E. coli biosynthetic machinery. To produce XR in E. coli, three C-terminal deletion variants of this protein were constructed. In contrast to the full-length XR, their expression resulted in efficient synthesis in E. coli cells. However, cells producing recombinant XR variants bound retinal only upon growth in minimal medium, not in the rich one. The XR3 variant with deletion of ten C-terminal amino acid residues was obtained and characterized. Its absorption spectrum and photocycle kinetics were close to those reported for XR isolated from S. ruber membranes and bleached from salinixanthin. We have also constructed the first mutants of XR, H62M and D96N, and examined their properties.


Assuntos
Carotenoides , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Glicosídeos/química , Glicosídeos/metabolismo , Proteínas de Bactérias/química
12.
Toxins (Basel) ; 15(10)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37888643

RESUMO

Cancer progression is characterized by microenvironmental acidification. Tumor cells adapt to low environmental pH by activating acid-sensing trimeric ion channels of the DEG/ENaC family. The α-ENaC/ASIC1a/γ-ENaC heterotrimeric channel is a tumor-specific acid-sensing channel, and its targeting can be considered a new strategy for cancer therapy. Mambalgin-2 from the Dendroaspis polylepis venom inhibits the α-ENaC/ASIC1a/γ-ENaC heterotrimer more effectively than the homotrimeric ASIC1a channel, initially proposed as the target of mambalgin-2. Although the molecular basis of such mambalgin selectivity remained unclear. Here, we built the models of the complexes of mambalgin-2 with the α-ENaC/ASIC1a/γ-ENaC and ASIC1a channels, performed MD and predicted the difference in the binding modes. The importance of the 'head' loop region of mambalgin-2 for the interaction with the hetero-, but not with the homotrimeric channel was confirmed by site-directed mutagenesis and electrophysiology. A new mode of allosteric regulation of the ENaC channels by linking the thumb domain of the ASIC1a subunit with the palm domain of the γ-ENaC subunit was proposed. The data obtained provide new insights into the regulation of various types of acid-sensing ion channels and the development of new strategies for cancer treatment.


Assuntos
Canais Epiteliais de Sódio , Neoplasias , Animais , Canais Epiteliais de Sódio/genética , Canais Iônicos Sensíveis a Ácido/genética , Xenopus laevis/metabolismo , Neoplasias/tratamento farmacológico
13.
J Biol Chem ; 286(12): 10618-27, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21252236

RESUMO

Discovery of proteins expressed in the central nervous system sharing the three-finger structure with snake α-neurotoxins provoked much interest to their role in brain functions. Prototoxin LYNX1, having homology both to Ly6 proteins and three-finger neurotoxins, is the first identified member of this family membrane-tethered by a GPI anchor, which considerably complicates in vitro studies. We report for the first time the NMR spatial structure for the water-soluble domain of human LYNX1 lacking a GPI anchor (ws-LYNX1) and its concentration-dependent activity on nicotinic acetylcholine receptors (nAChRs). At 5-30 µM, ws-LYNX1 competed with (125)I-α-bungarotoxin for binding to the acetylcholine-binding proteins (AChBPs) and to Torpedo nAChR. Exposure of Xenopus oocytes expressing α7 nAChRs to 1 µM ws-LYNX1 enhanced the response to acetylcholine, but no effect was detected on α4ß2 and α3ß2 nAChRs. Increasing ws-LYNX1 concentration to 10 µM caused a modest inhibition of these three nAChR subtypes. A common feature for ws-LYNX1 and LYNX1 is a decrease of nAChR sensitivity to high concentrations of acetylcholine. NMR and functional analysis both demonstrate that ws-LYNX1 is an appropriate model to shed light on the mechanism of LYNX1 action. Computer modeling, based on ws-LYNX1 NMR structure and AChBP x-ray structure, revealed a possible mode of ws-LYNX1 binding.


Assuntos
Proteínas Ligadas por GPI/química , Modelos Moleculares , Receptores Nicotínicos/química , Proteínas Adaptadoras de Transdução de Sinal , Animais , Bungarotoxinas/química , Bungarotoxinas/farmacologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Oócitos , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Solubilidade , Xenopus laevis
14.
Front Oncol ; 12: 904742, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837090

RESUMO

Lung cancer is one of the most common cancer types in the world. Despite existing treatment strategies, overall patient survival remains low and new targeted therapies are required. Acidification of the tumor microenvironment drives the growth and metastasis of many cancers. Acid sensors such as acid-sensing ion channels (ASICs) may become promising targets for lung cancer therapy. Previously, we showed that inhibition of the ASIC1 channels by a recombinant analogue of mambalgin-2 from Dendroaspis polylepis controls oncogenic processes in leukemia, glioma, and melanoma cells. Here, we studied the effects and molecular targets of mambalgin-2 in lung adenocarcinoma A549 and Lewis cells, lung transformed WI-38 fibroblasts, and lung normal HLF fibroblasts. We found that mambalgin-2 inhibits the growth and migration of A549, metastatic Lewis P29 cells, and WI-38 cells, but not of normal fibroblasts. A549, Lewis, and WI-38 cells expressed different ASIC and ENaC subunits, while normal fibroblasts did not at all. Mambalgin-2 induced G2/M cell cycle arrest and apoptosis in lung adenocarcinoma cells. In line, acidification-evoked inward currents were observed only in A549 and WI-38 cells. Gene knockdown showed that the anti-proliferative and anti-migratory activity of mambalgin-2 is dependent on the expression of ASIC1a, α-ENaC, and γ-ENaC. Using affinity extraction and immunoprecipitation, mambalgin-2 targeting of ASIC1a/α-ENaC/γ-ENaC heteromeric channels in A549 cells was shown. Electrophysiology studies in Xenopus oocytes revealed that mambalgin-2 inhibits the ASIC1a/α-ENaC/γ-ENaC channels with higher efficacy than the ASIC1a channels, pointing on the heteromeric channels as a primary target of the toxin in cancer cells. Finally, bioinformatics analysis showed that the increased expression of ASIC1 and γ-ENaC correlates with a worse survival prognosis for patients with lung adenocarcinoma. Thus, the ASIC1a/α-ENaC/γ-ENaC heterotrimer can be considered a marker of cell oncogenicity and its targeting is promising for the design of new selective cancer therapeutics.

15.
Biomedicines ; 10(3)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35327461

RESUMO

Metastatic melanoma is a highly malignant tumor. Melanoma cells release extracellular vesicles (EVs), which contribute to the growth, metastasis, and malignancy of neighboring cells by transfer of tumor-promoting miRNAs, mRNA, and proteins. Melanoma microenvironment acidification promotes tumor progression and determines EVs' properties. We studied the influence of EVs derived from metastatic melanoma cells cultivated at acidic (6.5) and normal (7.4) pH on the morphology and homeostasis of normal keratinocytes. Acidification of metastatic melanoma environment made EVs more prooncogenic with increased expression of prooncogenic mi221 RNA, stemless factor CD133, and pro-migration factor SNAI1, as well as with downregulated antitumor mir7 RNA. Incubation with EVs stimulated growth and migration both of metastatic melanoma cells and keratinocytes and changed the morphology of keratinocytes to stem-like phenotype, which was confirmed by increased expression of the stemness factors KLF and CD133. Activation of the AKT/mTOR and ERK signaling pathways and increased expression of epidermal growth factor receptor EGFR and SNAI1 were detected in keratinocytes upon incubation with EVs. Moreover, EVs reduced the production of different cytokines (IL6, IL10, and IL12) and adhesion factors (sICAM-1, sICAM-3, sPecam-1, and sCD40L) usually secreted by keratinocytes to control melanoma progression. Bioinformatic analysis revealed the correlation between decreased expression of these secreted factors and worse survival prognosis for patients with metastatic melanoma. Altogether, our data mean that metastatic melanoma EVs are important players in the transformation of normal keratinocytes.

16.
Commun Biol ; 5(1): 1344, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36477694

RESUMO

Nicotinic acetylcholine receptor of α7 type (α7-nAChR) presented in the nervous and immune systems and epithelium is a promising therapeutic target for cognitive disfunctions and cancer treatment. Weak toxin from Naja kaouthia venom (WTX) is a non-conventional three-finger neurotoxin, targeting α7-nAChR with weak affinity. There are no data on interaction mode of non-conventional neurotoxins with nAChRs. Using α-bungarotoxin (classical three-finger neurotoxin with high affinity to α7-nAChR), we showed applicability of cryo-EM to study complexes of α7-nAChR extracellular ligand-binding domain (α7-ECD) with toxins. Using cryo-EM structure of the α7-ECD/WTX complex, together with NMR data on membrane active site in the WTX molecule and mutagenesis data, we reconstruct the structure of α7-nAChR/WTX complex in the membrane environment. WTX interacts at the entrance to the orthosteric site located at the receptor intersubunit interface and simultaneously forms the contacts with the membrane surface. WTX interaction mode with α7-nAChR significantly differs from α-bungarotoxin's one, which does not contact the membrane. Our study reveals the important role of the membrane for interaction of non-conventional neurotoxins with the nicotinic receptors.


Assuntos
Receptores Nicotínicos , Receptores Nicotínicos/genética , Toxinas Três Dedos , Bungarotoxinas , Neurotoxinas/toxicidade
17.
Biomedicines ; 9(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34680442

RESUMO

Melanoma is an aggressive cancer characterized by the acidification of the extracellular environment. Here, we showed for the first time that extracellular media acidification increases proliferation, migration, and invasion of patient-derived metastatic melanoma cells and up-regulates cell-surface expression of acid-sensitive channels containing the ASIC1a, α-ENaC, and γ-ENaC subunits. No influence of media acidification on these processes was found in normal keratinocytes. To control metastatic melanoma progression associated with the ASIC1a up-regulation, we proposed the ASIC1a inhibitor, -mambalgin-2 from Dendpoaspis polylepis venom. Recombinant analog of mambalgin-2 cancelled acidification-induced proliferation, migration, and invasion of metastatic melanoma cells, promoted apoptosis, and down-regulated cell-surface expression of prooncogenic factors CD44 and Frizzled 4 and phosphorylation of transcription factor SNAI. Confocal microscopy and affinity purification revealed that mambalgin-2 interacts with heterotrimeric ASIC1a/α-ENaC/γ-ENaC channels on the surface of metastatic melanoma cells. Using the mutant variant of mambalgin-2 with reduced activity toward ASIC1a, we confirmed that the principal molecular target of mambalgin-2 in melanoma cells is the ASIC1a subunit. Bioinformatic analysis confirmed up-regulation of the ASIC1 expression as a marker of poor survival prognosis for patients with metastatic melanoma. Thus, targeting ASIC1a by drugs such as mambalgin-2 could be a promising strategy for metastatic melanoma treatment.

18.
J Invest Dermatol ; 141(9): 2229-2237, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33741389

RESUMO

Mal de Meleda is an autosomal recessive palmoplantar keratoderma associated with mutations in a gene encoding SLURP-1. SLURP-1 controls growth, differentiation, and apoptosis of keratinocytes by interaction with α7-type nicotinic acetylcholine receptors. SLURP-1 has a three-finger structure with a ß-structural core (head) and three prolonged loops (fingers). To determine the role of SLURP-1 mutations, we produced 22 mutant variants of the protein, including those involved in Mal de Meleda pathogenesis. All mutants except R71H, R71P, T52A, R96P, and L98P were produced in the folded form. SLURP-1 reduces the growth of Het-1A keratinocytes; thus, we studied the influence of the mutations on its antiproliferative activity. Mutations in loops I and III led to the protein inactivation, whereas most mutations in loop II increased SLURP-1 antiproliferative activity. Alanine substitutions of R96 and L98 residues located in the protein head resulted in the appearance of additional pro-apoptotic activity. Our results agree with the diversity of Mal de Meleda phenotypes. Using obtained functional data, the SLURP-1/α7 type nicotinic acetylcholine receptor complex was modeled in silico. Our study provides functional and structural information about the role of the SLURP-1 mutations in Mal de Meleda pathogenesis and predicts SLURP-1 variants, which could drive the disease.


Assuntos
Antígenos Ly/genética , Queratinócitos/metabolismo , Ceratodermia Palmar e Plantar/metabolismo , Mutação/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Antígenos Ly/metabolismo , Apoptose , Linhagem Celular , Proliferação de Células , Progressão da Doença , Humanos , Queratinócitos/patologia , Ceratodermia Palmar e Plantar/genética , Ceratodermia Palmar e Plantar/patologia , Mutagênese Sítio-Dirigida , Fenótipo , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
19.
Front Cell Dev Biol ; 9: 739391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595181

RESUMO

Secreted Ly6/uPAR-related protein 1 (SLURP-1) is a secreted Ly6/uPAR protein that negatively modulates the nicotinic acetylcholine receptor of α7 type (α7-nAChR), participating in control of cancer cell growth. Previously we showed, that a recombinant analogue of human SLURP-1 (rSLURP-1) diminishes the lung adenocarcinoma A549 cell proliferation and abolishes the nicotine-induced growth stimulation. Here, using multiplex immunoassay, we demonstrated a decrease in PTEN and mammalian target of rapamycin (mTOR) kinase phosphorylation in A549 cells upon the rSLURP-1 treatment pointing on down-regulation of the PI3K/AKT/mTOR signaling pathway. Decreased phosphorylation of the platelet-derived growth factor receptor type ß (PDGFRß) and arrest of the A549 cell cycle in the S and G2/M phases without apoptosis induction was also observed. Using a scratch migration assay, inhibition of A549 cell migration under the rSLURP-1 treatment was found. Affinity extraction demonstrated that rSLURP-1 in A549 cells forms a complex not only with α7-nAChR, but also with PDGFRα and epidermal growth factor receptor (EGFR), which are known to be involved in regulation of cancer cell growth and migration and are able to form a heterodimer. Knock-down of the genes encoding α7-nAChR, PDGFRα, and EGFR confirmed the involvement of these receptors in the anti-migration effect of SLURP-1. Thus, SLURP-1 can target the α7-nAChR complexes with PDGFRα and EGFR in the membrane of epithelial cells. Using chimeric proteins with grafted SLURP-1 loops we demonstrated that loop I is the principal active site responsible for the SLURP-1 interaction with α7-nAChR and its antiproliferative effect. Synthetic peptide mimicking the loop I cyclized by a disulfide bond inhibited ACh-evoked current at α7-nAChR, as well as A549 cell proliferation and migration. This synthetic peptide represents a promising prototype of new antitumor drug with the properties close to that of the native SLURP-1 protein.

20.
Int Immunopharmacol ; 82: 106303, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32106059

RESUMO

Human Ly-6/uPAR-related protein-1 (SLURP-1) is an allosteric negative modulator of the α7-type nicotinic acetylcholine receptor (α7-nAChR), one of the key receptors promoting nicotine-induced proliferation of lung cancer cells. Incubation of lung adenocarcinoma A549 cells with recombinant SLURP-1 (rSLURP-1) at concentrations >10 nM resulted in the significant decrease of the cell growth (~70%), while treatment of normal lung-derived WI-38 fibroblasts with rSLURP-1 did not influence the cell proliferation up to 1 µM of the protein. rSLURP-1 fully abolished the nicotine-induced increase of the cell proliferation, down-regulation of the expression of PTEN (the negative regulator of the AKT pathway, controlling the growth, survival, and proliferation of cancer cells), and up-regulation of the α7-nAChR expression in the A549 cells. Using the siRNA against α7-nAChR and inhibitors of different cell-surface receptors, we showed that rSLURP-1 antiproliferative effect in A549 cells is connected with α7-nAChR, epidermal growth factor receptors, and ß-adrenergic receptors. Moreover, we found that downstream effectors of rSLURP-1 are IP3 receptors and the STAT3 transcription factor. Implication of the IP3 receptors and PTEN in the rSLURP-1 antiproliferative activity points on the AKT-mediated signaling pathway. Co-application of rSLURP-1 with gefitinib and bortezomib (currently used anticancer drugs) resulted in an additive suppression of the A549 cells proliferation up to ~44% and 35%, respectively. Thus, rSLURP-1 could be considered a promising prototype of drugs to prevent nicotine-induced pathologies and cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA