Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Diabetologia ; 54(4): 935-44, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21190014

RESUMO

AIMS/HYPOTHESIS: Insulin action is purportedly modulated by Drosophila tribbles homologue 3 (TRIB3), which in vitro prevents thymoma viral proto-oncogene (AKT) and peroxisome proliferator-activated receptor-γ (PPAR-γ) activation. However, the physiological impact of TRIB3 action in vivo remains controversial. METHODS: We investigated the role of TRIB3 in rats treated with either a control or Trib3 antisense oligonucleotide (ASO). Tissue-specific insulin sensitivity was assessed in vivo using a euglycaemic-hyperinsulinaemic clamp. A separate group was treated with the PPAR-γ antagonist bisphenol-A-diglycidyl ether (BADGE) to assess the role of PPAR-γ in mediating the response to Trib3 ASO. RESULTS: Trib3 ASO treatment specifically reduced Trib3 expression by 70% to 80% in liver and white adipose tissue. Fasting plasma glucose, insulin concentrations and basal rate of endogenous glucose production were unchanged. However, Trib3 ASO increased insulin-stimulated whole-body glucose uptake by ~50% during the euglycaemic-hyperinsulinaemic clamp. This was attributable to improved skeletal muscle glucose uptake. Despite the reduction of Trib3 expression, AKT2 activity was not increased. Trib3 ASO increased white adipose tissue mass by 70% and expression of Ppar-γ and its key target genes, raising the possibility that Trib3 ASO improves insulin sensitivity primarily in a PPAR-γ-dependent manner. Co-treatment with BADGE blunted the expansion of white adipose tissue and abrogated the insulin-sensitising effects of Trib3 ASO. Finally, Trib3 ASO also increased plasma HDL-cholesterol, a change that persisted with BADGE co-treatment. CONCLUSIONS/INTERPRETATION: These data suggest that TRIB3 inhibition improves insulin sensitivity in vivo primarily in a PPAR-γ-dependent manner and without any change in AKT2 activity.


Assuntos
Resistência à Insulina/fisiologia , PPAR gama/metabolismo , Proteínas Quinases/metabolismo , Animais , Compostos Benzidrílicos , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Compostos de Epóxi/farmacologia , Técnica Clamp de Glucose , Immunoblotting , Resistência à Insulina/genética , Masculino , Oligonucleotídeos Antissenso/genética , PPAR gama/antagonistas & inibidores , PPAR gama/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
J Cell Biol ; 119(2): 313-24, 1992 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1400576

RESUMO

To investigate the role of protein kinase C (PKC) in the regulation of insulin secretion, we visualized changes in the intracellular localization of alpha-PKC in fixed beta-cells from both isolated rat pancreatic islets and the pancreas of awake unstressed rats during glucose-induced insulin secretion. Isolated, perifused rat islets were fixed in 4% paraformaldehyde, detergent permeabilized, and labeled with a mAb specific for alpha-PKC. The labeling was visualized by confocal immunofluorescent microscopy. In isolated rat pancreatic islets perifused with 2.75 mM glucose, alpha-PKC immunostaining was primarily cytoplasmic in distribution throughout the beta-cells. In islets stimulated with 20 mM glucose, there was a significant redistribution of alpha-PKC to the cell periphery. This glucose-induced redistribution was abolished when either mannoheptulose, an inhibitor of glucose metabolism, or nitrendipine, an inhibitor of calcium influx, were added to the perifusate. We also examined changes in the intracellular distribution of alpha-PKC in the beta-cells of awake, unstressed rats that were given an intravenous infusion of glucose. Immunocytochemical analysis of pancreatic sections from these rats demonstrated a glucose-induced translocation of alpha-PKC to the cell periphery of the beta-cells. These results demonstrate that the metabolism of glucose can induce the redistribution of alpha-PKC to the cell periphery of beta-cells, both in isolated islets and in the intact animal, and suggest that alpha-PKC plays a role in mediating glucose-induced insulin secretion.


Assuntos
Glucose/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/enzimologia , Proteína Quinase C/isolamento & purificação , Animais , Anticorpos Monoclonais , Transporte Biológico , Cálcio/metabolismo , Compartimento Celular , Imunofluorescência , Glucoquinase/antagonistas & inibidores , Técnicas In Vitro , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Masculino , Manoeptulose/farmacologia , Nitrendipino/farmacologia , Ratos , Ratos Sprague-Dawley , Estimulação Química , Acetato de Tetradecanoilforbol/farmacologia , Fixação de Tecidos
3.
Science ; 254(5031): 573-6, 1991 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-1948033

RESUMO

The rate of net hepatic glycogenolysis was assessed in humans by serially measuring hepatic glycogen concentration at 3- to 12-hour intervals during a 68-hour fast with 13C nuclear magnetic resonance spectroscopy. The net rate of gluconeogenesis was calculated by subtracting the rate of net hepatic glycogenolysis from the rate of glucose production in the whole body measured with tritiated glucose. Gluconeogenesis accounted for 64 +/- 5% (mean +/- standard error of the mean) of total glucose production during the first 22 hours of fasting. In the subsequent 14-hour and 18-hour periods of the fast, gluconeogenesis accounted for 82 +/- 5% and 96 +/- 1% of total glucose production, respectively. These data show that gluconeogenesis accounts for a substantial fraction of total glucose production even during the first 22 hours of a fast in humans.


Assuntos
Gluconeogênese , Glicogênio Hepático/metabolismo , Fígado/metabolismo , Nitrogênio/urina , Adulto , Glicemia/metabolismo , Isótopos de Carbono , Jejum , Feminino , Glucagon/sangue , Humanos , Hidrocortisona/sangue , Insulina/sangue , Cinética , Espectroscopia de Ressonância Magnética/métodos , Masculino
4.
Science ; 292(5522): 1728-31, 2001 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-11387480

RESUMO

Glucose homeostasis depends on insulin responsiveness in target tissues, most importantly, muscle and liver. The critical initial steps in insulin action include phosphorylation of scaffolding proteins and activation of phosphatidylinositol 3-kinase. These early events lead to activation of the serine-threonine protein kinase Akt, also known as protein kinase B. We show that mice deficient in Akt2 are impaired in the ability of insulin to lower blood glucose because of defects in the action of the hormone on liver and skeletal muscle. These data establish Akt2 as an essential gene in the maintenance of normal glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Resistência à Insulina , Insulina/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Animais , Glicemia/metabolismo , Desoxiglucose/metabolismo , Feminino , Marcação de Genes , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Homeostase , Insulina/administração & dosagem , Insulina/sangue , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais
5.
J Clin Invest ; 89(4): 1069-75, 1992 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-1556176

RESUMO

To assess the rate-limiting step in muscle glycogen synthesis in non-insulin-dependent diabetes mellitus (NIDDM), the concentration of glucose-6-phosphate (G6P) was measured by 31P nuclear magnetic resonance (NMR) during a hyperglycemic-hyperinsulinemic clamp. Six subjects with NIDDM and six age weight-matched controls were studied at similar steady-state plasma concentrations of insulin (approximately 450 pmol/liter) and glucose (11 mmol/liter). The concentration of G6P in the gastrocnemius muscle was measured by 31P NMR. Whole-body oxidative and nonoxidative glucose metabolism was determined by the insulin-glucose clamp technique in conjunction with indirect calorimetry. Nonoxidative glucose metabolism which under these conditions is a measure of muscle glycogen synthesis (1990. N. Engl. J. Med. 322:223-228), was 31 +/- 7 mumol/(kg body wt-min) in the normal subjects and 13 +/- 3 mumol/(kg body wt-min) in the NIDDM subjects (P less than 0.05). The concentration of G6P was higher (0.24 +/- 0.02 mmol/kg muscle) in the normal subjects than in the NIDDM subjects (0.17 +/- 0.02, P less than 0.01). Increasing insulin concentrations to insulin 8,500 pmol/liter in four NIDDM subjects restored the glucose uptake rate and G6P concentrations to normal levels. In conclusion, the lower concentration of G6P in the diabetic subjects despite a decreased rate of nonoxidative glucose metabolism is consistent with a defect in muscle glucose transport or phosphorylation reducing the rate of muscle glycogen synthesis.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Glucofosfatos/análise , Músculos/química , Idoso , Transporte Biológico , Glucose-6-Fosfato , Humanos , Insulina/farmacologia , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculos/metabolismo , Fosforilação
6.
J Clin Invest ; 92(6): 2667-74, 1993 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8254023

RESUMO

To evaluate the roles of iatrogenic hypoglycemia and diabetes per se in the pathogenesis of defective hormonal counterregulation against hypoglycemia in insulin-dependent diabetes mellitus (IDDM), nondiabetic, and spontaneously diabetic BB/Wor rats were studied using a euglycemic/hypoglycemic clamp. In nondiabetic rats, recurrent (4 wk) insulin-induced hypoglycemia (mean daily glucose, MDG, 59 mg/dl) dramatically reduced glucagon and epinephrine responses by 84 and 94%, respectively, to a standardized glucose fall from 110 to 50 mg/dl. These deficits persisted for > 4 d after restoring normoglycemia, and were specific for hypoglycemia, with normal glucagon and epinephrine responses to arginine and hypovolemia, respectively. After 4 wk of normoglycemia, hormonal counterregulation increased, with the epinephrine, but not the glucagon response reaching control values. In diabetic BB rats (MDG 245 mg/dl with intermittent hypoglycemia), glucagon and epinephrine counterregulation were reduced by 86 and 90%, respectively. Chronic iatrogenic hypoglycemia (MDG 52 mg/dl) further suppressed counterregulation. Prospective elimination of hypoglycemia (MDG 432 mg/dl) improved, but did not normalize hormonal counterregulation. In diabetic rats, the glucagon defect appeared to be specific for hypoglycemia, whereas deficient epinephrine secretion also occurred during hypovolemia. We concluded that both recurrent hypoglycemia and the diabetic state independently lead to defective hormonal counterregulation. These data suggest that in IDDM iatrogenic hypoglycemia magnifies preexisting counterregulatory defects, thereby increasing the risk of severe hypoglycemia.


Assuntos
Diabetes Mellitus Tipo 1/sangue , Epinefrina/metabolismo , Glucagon/metabolismo , Hipoglicemia/fisiopatologia , Insulina/farmacologia , Animais , Arginina/farmacologia , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/fisiopatologia , Epinefrina/sangue , Glucagon/sangue , Homeostase , Hipoglicemia/sangue , Hipoglicemia/induzido quimicamente , Insulina/uso terapêutico , Masculino , Ratos , Ratos Endogâmicos BB , Valores de Referência , Fatores de Tempo
7.
J Clin Invest ; 80(2): 387-93, 1987 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-3611353

RESUMO

In order to directly determine the amount of label exchange that occurs in the tricarboxylic cycle from labeled alanine and lactate after the ingestion of a glucose load [1-13C]glucose was administered by continuous intraduodenal infusion to awake catheterized rats to achieve steady state jugular venous glycemia (160 mg/dl) for 180 min. Liver was freeze-clamped at 90 and 180 min, and perchloric acid extracts of the liver were subjected to 13C and 1H nuclear magnetic resonance analysis. Dilution in the oxaloacetate pool was determined by comparing the intrahepatic 13C enrichments of C2, C3 positions of glutamate with the C2, C3 positions of alanine and lactate. In addition steady state flux equations were derived for calculation of relative fluxes through pyruvate dehydrogenase/TCA cycle flux and pyruvate kinase flux/total pyruvate utilization. After glucose ingestion in a 24-h fasted rat direct conversion of glucose was responsible for 34% of glycogen. The intrahepatic dilution factor for labeled pyruvate in the oxaloacetate pool was 2.4. Using this factor, alanine and lactate contributed approximately 55% to glycogen formation. Pyruvate dehydrogenase flux ranged between 24 and 35% of total acetyl-coenzyme A (CoA) production and pyruvate kinase flux relative to total pyruvate utilization was approximately 40%.


Assuntos
Glicogênio/metabolismo , Aminoácidos/sangue , Animais , Glicemia/metabolismo , Ciclo do Ácido Cítrico , Lactatos/sangue , Espectroscopia de Ressonância Magnética , Masculino , Complexo Piruvato Desidrogenase/metabolismo , Piruvato Quinase/metabolismo , Ratos , Vigília
8.
J Clin Invest ; 79(5): 1510-5, 1987 May.
Artigo em Inglês | MEDLINE | ID: mdl-3571496

RESUMO

Insulin resistance is characteristic of the diabetic state. To define the role of hyperglycemia in generation of the insulin resistance, we examined the effect of phlorizin treatment on tissue sensitivity to insulin in partially pancreatectomized rats. Five groups were studied: group I, sham-operated controls; group II, partially pancreatectomized diabetic rats with moderate glucose intolerance; group III, diabetic rats treated with phlorizin to normalize glucose tolerance; group IV, phlorizin-treated controls; and group V, phlorizin-treated diabetic rats restudied after discontinuation of phlorizin. Insulin sensitivity was assessed with the euglyemic hyperinsulinemic clamp technique in awake, unstressed rats. Insulin-mediated glucose metabolism was reduced by approximately 30% (P less than 0.001) in diabetic rats. Phlorizin treatment of diabetic rats completely normalized insulin sensitivity but had no effect on insulin action in controls. Discontinuation of phlorizin in phlorizin-treated diabetic rats resulted in the reemergence of insulin resistance. These data demonstrate that a reduction of beta-cell mass leads to the development of insulin resistance, and correction of hyperglycemia with phlorizin, without change in insulin levels, normalizes insulin sensitivity. These results provide the first in vivo evidence that hyperglycemia per se can lead to the development of insulin resistance.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Hiperglicemia/tratamento farmacológico , Resistência à Insulina/efeitos dos fármacos , Florizina/uso terapêutico , Animais , Glicosúria/fisiopatologia , Hiperinsulinismo/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos
9.
J Clin Invest ; 80(4): 1037-44, 1987 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-3308956

RESUMO

We have examined the effect of chronic (4 wk) hyperglycemia on insulin secretion in vivo in an awake, unstressed rat model. Three groups of animals were examined: control, partial (90%) pancreatectomy, and partial pancreatectomy plus phlorizin, in order to normalize plasma glucose levels. Insulin secretion in response to arginine (2 mM), hyperglycemia (+100 mg/dl), and arginine plus hyperglycemia was evaluated. In diabetic compared with control animals three specific alterations were observed: (a) a deficient insulin response, in both first and second phases, to hyperglycemia; (b) an augmented insulin response to the potentiating effect of arginine under basal glycemic conditions; and (c) an inability of hyperglycemia to augment the potentiating effect of arginine above that observed under basal glycemic conditions. Normalization of the plasma glucose profile by phlorizin treatment in diabetic rats completely corrected all three beta cell abnormalities. These results indicate that chronic hyperglycemia can lead to a defect in in vivo insulin secretion which is reversible when normoglycemia is restored.


Assuntos
Hiperglicemia/metabolismo , Insulina/metabolismo , Pâncreas/fisiologia , Animais , Arginina , Glicemia/análise , Peso Corporal , Doença Crônica , Diabetes Mellitus Experimental/metabolismo , Glicosúria/induzido quimicamente , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , Pancreatectomia , Florizina , Ratos , Ratos Endogâmicos
10.
J Clin Invest ; 81(5): 1545-55, 1988 May.
Artigo em Inglês | MEDLINE | ID: mdl-3284915

RESUMO

Recent studies have established the existence of substrate cycles in humans, but factors regulating the rate of cycling have not been identified. We have therefore investigated the acute response of glucose/glucose-6P-glucose (glucose) and triglyceride/fatty acid (TG/FA) substrate cycling to the infusion of epinephrine (0.03 microgram/kg.min) and glucagon. The response to a high dose glucagon infusion (2 micrograms/kg.min) was tested, as well as the response to a low dose infusion (5 ng/kg.min), with and without the simultaneous infusion of somatostatin (0.1 microgram/kg.min) and insulin (0.1 mU/kg.min). Additionally, the response to chronic prednisone (50 mg/d) was evaluated, both alone and during glucagon (low dose) and epinephrine infusion. Finally, the response to hyperglycemia, with insulin and glucagon held constant by somatostatin infusion and constant replacement of glucagon and insulin at basal rates, was investigated. Glucose cycling was calculated as the difference between the rate of appearance (Ra) of glucose as determined using 2-d1- and 6,6-d2-glucose as tracers. TG/FA cycling was calculated by first determining the Ra glycerol with d5-glycerol and the Ra FFA with [1-13C]palmitate, then subtracting Ra FFA from three times Ra glycerol. The results indicate that glucagon stimulates glucose cycling, and this stimulatory effect is augmented when the insulin response to glucagon infusion is blocked. Glucagon had minimal effect on TG/FA cycling. In contrast, epinephrine stimulated TG/FA cycling, but affected glucose cycling minimally. Prednisone had no direct effect on either glucose or TG/FA cycling, but blunted the stimulatory effect of glucagon on glucose cycling. Hyperglycemia, per se, had no direct effect on glucose or TG/FA cycling. Calculations revealed that stimulation of TG/FA cycling theoretically amplified the sensitivity of control of fatty acid flux, but no such amplification was evident as a result of the stimulation of glucose cycling by glucagon.


Assuntos
Epinefrina/fisiologia , Ácidos Graxos/metabolismo , Glucagon/fisiologia , Glucose/metabolismo , Triglicerídeos/metabolismo , Adulto , Glicemia/análise , Humanos , Hiperglicemia/metabolismo , Insulina/análise , Prednisona/farmacologia
11.
J Clin Invest ; 99(9): 2219-24, 1997 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-9151794

RESUMO

To determine the mechanism of impaired insulin-stimulated muscle glycogen metabolism in patients with poorly controlled insulin-dependent diabetes mellitus (IDDM), we used 13C-NMR spectroscopy to monitor the peak intensity of the C1 resonance of the glucosyl units in muscle glycogen during a 6-h hyperglycemic-hyperinsulinemic clamp using [1-(13)C]glucose-enriched infusate followed by nonenriched glucose. Under similar steady state (t = 3-6 h) plasma glucose (approximately 9.0 mM) and insulin concentrations (approximately 400 pM), nonoxidative glucose metabolism was significantly less in the IDDM subjects compared with age-weight-matched control subjects (37+/-6 vs. 73+/-11 micromol/kg of body wt per minute, P < 0.05), which could be attributed to an approximately 45% reduction in the net rate of muscle glycogen synthesis in the IDDM subjects compared with the control subjects (108+/-16 vs. 195+/-6 micromol/liter of muscle per minute, P < 0.001). Muscle glycogen turnover in the IDDM subjects was significantly less than that of the controls (16+/-4 vs. 33+/-5%, P < 0.05), indicating that a marked reduction in flux through glycogen synthase was responsible for the reduced rate of net glycogen synthesis in the IDDM subjects. 31P-NMR spectroscopy was used to determine the intramuscular concentration of glucose-6-phosphate (G-6-P) under the same hyperglycemic-hyperinsulinemic conditions. Basal G-6-P concentration was similar between the two groups (approximately 0.10 mmol/kg of muscle) but the increment in G-6-P concentration in response to the glucose-insulin infusion was approximately 50% less in the IDDM subjects compared with the control subjects (0.07+/-0.02 vs. 0.13+/-0.02 mmol/kg of muscle, P < 0.05). When nonoxidative glucose metabolic rates in the control subjects were matched to the IDDM subjects, the increment in the G-6-P concentration (0.06+/-0.02 mmol/kg of muscle) was no different than that in the IDDM subjects. Together, these data indicate that defective glucose transport/phosphorylation is the major factor responsible for the lower rate of muscle glycogen synthesis in the poorly controlled insulin-dependent diabetic subjects.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Insulina/farmacologia , Músculos/metabolismo , Adulto , Glicemia/metabolismo , Feminino , Glucose/farmacologia , Técnica Clamp de Glucose , Glucose-6-Fosfato/análise , Glucose-6-Fosfato/metabolismo , Glicogênio Sintase/metabolismo , Humanos , Hiperglicemia/metabolismo , Hiperinsulinismo/metabolismo , Espectroscopia de Ressonância Magnética , Masculino
12.
J Clin Invest ; 100(11): 2892-9, 1997 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-9389756

RESUMO

Myocardial glucose use is regulated by competing substrates and hormonal influences. However, the interactions of these effectors on the metabolism of exogenous glucose and glucose derived from endogenous glycogen are not completely understood. In order to determine changes in exogenous glucose uptake, glucose oxidation, and glycogen enrichment, hearts were perfused with glucose (5 mM) either alone, or glucose plus insulin (40 microU/ml), glucose plus acetoacetate (5 mM), or glucose plus insulin and acetoacetate, using a three tracer (3H, 14C, and 13C) technique. Insulin-stimulated glucose uptake and lactate production in the absence of acetoacetate, while acetoacetate inhibited the uptake of glucose and the oxidation of both exogenous glucose and endogenous carbohydrate. Depending on the metabolic conditions, the contribution of glycogen to carbohydrate metabolism varied from 20-60%. The addition of acetoacetate or insulin increased the incorporation of exogenous glucose into glycogen twofold, and the combination of the two had additive effects on the incorporation of glucose into glycogen. In contrast, the glycogen content was similar for the three groups. The increased incorporation of glucose in glycogen without a significant change in the glycogen content in hearts perfused with glucose, acetoacetate, and insulin suggests increased glycogen turnover. We conclude that insulin and acetoacetate regulate the incorporation of glucose into glycogen as well as the relative contributions of exogenous glucose and endogenous carbohydrate to myocardial energy metabolism by different mechanisms.


Assuntos
Acetoacetatos/farmacologia , Glucose/metabolismo , Insulina/farmacologia , Miocárdio/metabolismo , Animais , Ácido Cítrico/metabolismo , Glucose/farmacocinética , Glucose-6-Fosfato/metabolismo , Glicogênio/metabolismo , Coração/efeitos dos fármacos , Técnicas In Vitro , Masculino , Perfusão , Ratos , Ratos Sprague-Dawley
13.
J Clin Invest ; 76(2): 757-64, 1985 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-4031071

RESUMO

Substrate, or futile cycles, have been hypothesized to be under hormonal control, and important in metabolic regulation and thermogenesis. To define the role of thyroid hormones in the regulation of substrate cycling in glycolysis and gluconeogenesis, we measured rates of cycling in normal (n = 4), hypothyroid (n = 5), and hyperthyroid (n = 5) subjects employing a stable isotope turnover technique. Glucose labeled with deuterium at different positions (2-D1-, 3-D1-, and 6,6-D2-glucose) was given as a primed-constant infusion in tracer doses, and arterialized plasma samples were obtained and analyzed by gas-chromatography mass-spectrometry for the steady state enrichment of glucose that was labeled at the various positions. The rate of appearance (Ra) was then calculated for each isotopic tracer. The difference between the Ra determined by 2-D1-glucose (Ra2) and the Ra determined by 3-D1-glucose (Ra3) represents the substrate cycling rate (SCR) between glucose and glucose-6-phosphate. The difference between the Ra determined by 3-D1-glucose (Ra3) and the Ra determined by 6,6-D2-glucose (Ra6) represents the SCR between fructose-6-phosphate and fructose-1,6-diphosphate. The difference between Ra2 and Ra6 represents the combined SCR of both cycles. In normal subjects (serum thyroxine [T4] = 8.4 +/- 1.2 microgram/dl (all expressions, mean +/- SD), n = 4), the rates of appearance for Ra2, Ra3, and Ra6 were 3.23 +/- 0.56, 2.64 +/- 0.50, and 2.00 +/- 0.27 mg/kg X min, respectively, whereas those in the hypothyroid subjects (T4 = 1.0 +/- 0.8 microgram/dl; n = 5) were 1.77 +/- 0.56 (P less than 0.01), 1.52, 1.57 +/- 0.31 (P less than 0.05) mg/kg X min, respectively. Conversely, the rates of appearance for Ra2 and Ra6 in the hyperthyroid subjects (T4 = 23.9 +/- 3.6 micrograms/dl) were 3.94 +/- 0.43 (P less than 0.05) and 2.54 +/- 0.22 (P less than 0.02), respectively, compared with the normal subjects. On the basis of these data, we noted that the normal subjects had a combined SCR of 1.23 +/- 0.35 mg/kg X min. In contrast, the hypothyroid patients had a significantly decreased combined SCR, 0.20 +/- 0.54 mg/kg X min (P less than 0.02). The hyperthyroid patients had a combined SCR of 1.39 +/- 0.23 mg/kg X min (P less than NS). To determine whether these cycles responded to thyroid hormone treatment, these same hypothyroid subjects were acutely treated for 1 wk with parenteral 50 micrograms/d sodium L-triiodothyronine and chronically with 100-150 micrograms/d L-thyroxine. After 7 d, their mean oxygen consumption rate and carbon dioxide production rate increased significantly from 102+/-13 micromol/kg.min, to 147+/-34 micromol/kg.min (P<0.05), and from 76+/-13 micromol/kg.min to 111+/-19 micromol/kg.min (P<0.05), respectively. The combined SCR (Ra(2)--Ra(6) remained unchanged at 0.07+/-0.37 mg/kg.min. However, after 6 mo of oral L-thyroxine therapy (T(4)=9.5+/-1.4 microgram/kl) the treated hypothyroid patients had increased their combined SCR (Ra(2)--Ra(6)) to 0.86 +/-0.23 mg/kg.min (P<0.02), a value not significantly different from the combined SCR of normal subjects. We conclude that substrate cycling between glucose and glucose-6-phosphate and between fructose-6-phosphate and fructose-1,6-diphosphate occurs in man and is affected by thyroid hormone. Substrate cycles may represent a mechanism by which thyroid hormone alters the sensitivity of certain reactions to metabolic signals.


Assuntos
Gluconeogênese , Glicólise , Hipertireoidismo/metabolismo , Hipotireoidismo/metabolismo , Adulto , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Hipertireoidismo/tratamento farmacológico , Hipotireoidismo/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Tiroxina/uso terapêutico , Fatores de Tempo , Tri-Iodotironina/uso terapêutico
14.
J Clin Invest ; 65(2): 496-505, 1980 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-7356691

RESUMO

To study the effects of hyperglycemia on the metabolism of alanine and lactate independent of changes in plasma insulin and glucagon, glucose was infused into five 36-h-fasted dogs along with somatostatin and constant replacement amounts of both insulin and glucagon. Hepatic uptakes of alanine and lactate were calculated using the arteriovenous difference technique. [14C]Alanine was infused to measure the conversion of alanine and lactate into glucose. Hyperglycemia (delta 115 mg/dl) of 2 h duration caused the plasma alanine level to increase by over 50%. This change was caused by an increase in the inflow of alanine into plasma since the net hepatic uptake of the amino acid did not change. Taken together, the above findings indicate that glucose per se can significantly impair the fractional extraction of alanine by the liver. Hepatic extraction of lactate was also affected by hyperglycemia and had fallen to zero within 90 min of starting the glucose infusion. This fall was associated with a doubling of arterial lactate level. Conversion of [14C]-alanine and [14C]lactate into [14C]glucose was suppressed by 60 +/- 11% after 2 h of hyperglycemia, and because this fall could not be entirely accounted for by decreased lactate extraction an inhibitory effect of glucose on gluconeogenesis within the liver is suggested. These studies indicate that the plasma glucose level per se can be an important determinant of the level of alanine and lactate in plasma as well as the rate at which they are converted to glucose.


Assuntos
Alanina/sangue , Glucagon/metabolismo , Glucose/farmacologia , Insulina/metabolismo , Animais , Glicemia/metabolismo , Cães , Feminino , Hiperglicemia/sangue , Secreção de Insulina , Lactatos/sangue , Masculino , Fatores de Tempo
15.
J Clin Invest ; 97(12): 2859-65, 1996 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-8675698

RESUMO

To examine the mechanism by which lipids cause insulin resistance in humans, skeletal muscle glycogen and glucose-6-phosphate concentrations were measured every 15 min by simultaneous 13C and 31P nuclear magnetic resonance spectroscopy in nine healthy subjects in the presence of low (0.18 +/- 0.02 mM [mean +/- SEM]; control) or high (1.93 +/- 0.04 mM; lipid infusion) plasma free fatty acid levels under euglycemic (approximately 5.2 mM) hyperinsulinemic (approximately 400 pM) clamp conditions for 6 h. During the initial 3.5 h of the clamp the rate of whole-body glucose uptake was not affected by lipid infusion, but it then decreased continuously to be approximately 46% of control values after 6 h (P < 0.00001). Augmented lipid oxidation was accompanied by a approximately 40% reduction of oxidative glucose metabolism starting during the third hour of lipid infusion (P < 0.05). Rates of muscle glycogen synthesis were similar during the first 3 h of lipid and control infusion, but thereafter decreased to approximately 50% of control values (4.0 +/- 1.0 vs. 9.3 +/- 1.6 mumol/[kg.min], P < 0.05). Reduction of muscle glycogen synthesis by elevated plasma free fatty acids was preceded by a fall of muscle glucose-6-phosphate concentrations starting at approximately 1.5 h (195 +/- 25 vs. control: 237 +/- 26 mM; P < 0.01). Therefore in contrast to the originally postulated mechanism in which free fatty acids were thought to inhibit insulin-stimulated glucose uptake in muscle through initial inhibition of pyruvate dehydrogenase these results demonstrate that free fatty acids induce insulin resistance in humans by initial inhibition of glucose transport/phosphorylation which is then followed by an approximately 50% reduction in both the rate of muscle glycogen synthesis and glucose oxidation.


Assuntos
Ácidos Graxos não Esterificados/fisiologia , Resistência à Insulina , Adulto , Ácidos Graxos não Esterificados/sangue , Feminino , Glucose/metabolismo , Glicogênio/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo
16.
J Clin Invest ; 99(2): 361-5, 1997 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-9006005

RESUMO

The ventromedial hypothalamic nucleus (VMH) is necessary for the integrated hormonal response to hypoglycemia. To determine the role of the VMH as a glucose sensor, we performed experiments designed to specifically prevent glucopenia in the VMH, while producing hypoglycemia elsewhere. We used awake chronically catheterized rats, in which local VMH glucose perfusion (100 mM or 15 mM of D-glucose) was combined with a sequential euglycemic-hypoglycemic clamp. In two control groups the VMH was perfused either with (a) an iso-osmotic solution lacking glucose, or with (b) nonmetabolizable L-glucose (100 mM). During systemic hypoglycemia glucagon and catecholamine concentrations promptly increased in the control animals perfused with either 100 mM L-glucose or the iso-osmotic solution lacking glucose. In contrast, glucagon, epinephrine and norepinephrine release was inhibited in the animals in which the VMH was perfused with D-glucose; hormonal secretion was partially suppressed by the VMH perfusion with 15 mM D-glucose and suppressed by approximately 85% when the VMH was perfused with 100 mM D-glucose, as compared with the control groups. We conclude that the VMH must sense hypoglycemia for full activation of catecholamine and glucagon secretion and that it is a key glucose sensor for hypoglycemic counterregulation.


Assuntos
Glucose/farmacologia , Hipoglicemia/prevenção & controle , Núcleo Hipotalâmico Ventromedial/efeitos dos fármacos , Animais , Glicemia/análise , Catecolaminas/sangue , Cateteres de Demora , Quimioterapia do Câncer por Perfusão Regional , Epinefrina/sangue , Glucagon/sangue , Técnica Clamp de Glucose , Masculino , Microdiálise , Norepinefrina/sangue , Ratos , Ratos Sprague-Dawley , Vigília
17.
J Clin Invest ; 62(2): 487-91, 1978 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-670404

RESUMO

The first aim of this study was to determine whether the plasma glucose level can regulate hepatic glucose balance in vivo independent of its effects on insulin and glucagon secretion. To accomplish this, glucose was infused into conscious dogs whose basal insulin and glucagon secretion had been replaced by exogenous intraportal insulin and glucagon infusion after somatostatin inhibition of endogenous pancreatic hormone release. The acute induction of hyperglycemia (mean increment of 121 mg/dl) in the presence of basal levels of insulin (7+/-1 muU/ml) and glucagon (76+/-3 pg/ml) resulted in a 56% decrease in net hepatic glucose production but did not cause net hepatic glucose uptake. The second aim of the study was to determine whether a decrease in the plasma glucagon level would modify the effect of glucose on the liver. The above protocol was repeated with the exception that glucagon was withdrawn (83% decrease in plasma glucagon) coincident with the induction of hyperglycemia. Under this circumstance, with the insulin level basal (7+/-1 muU/ml) and the glucagon levels reduced (16+/-2 pg/ml), hyperglycemia (mean increment of 130 mg/dl) promoted marked net hepatic glucose uptake (1.5+/-0.2 mg/kg per min) and glycogen deposition. In conclusion, (a) physiological increments in the plasma glucose concentration, independent of their effects on insulin and glucagon secretion, can significantly reduce net hepatic glucose production in vivo but at levels as high as 230 mg/dl cannot induce net hepatic glucose storage and (b) in the presence of basal insulin the ability of hyperglycemia to stimulate net hepatic glucose storage is influenced by the plasma glucagon concentration.


Assuntos
Glicemia/fisiologia , Glucagon/fisiologia , Glucose/metabolismo , Insulina/fisiologia , Somatostatina/farmacologia , Animais , Cães , Feminino , Glucagon/sangue , Insulina/sangue , Fígado/metabolismo , Glicogênio Hepático/metabolismo , Masculino
18.
J Clin Invest ; 90(4): 1323-7, 1992 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1401068

RESUMO

UNLABELLED: To quantitate hepatic glycogenolysis, liver glycogen concentration was measured with 13C nuclear magnetic resonance spectroscopy in seven type II diabetic and five control subjects during 23 h of fasting. Net hepatic glycogenolysis was calculated by multiplying the rate of glycogen breakdown by the liver volume, determined from magnetic resonance images. Gluconeogenesis was calculated by subtracting the rate of hepatic glycogenolysis from the whole body glucose production rate, measured using [6-3H]glucose. Liver glycogen concentration 4 h after a meal was lower in the diabetics than in the controls; 131 +/- 20 versus 282 +/- 60 mmol/liter liver (P < 0.05). Net hepatic glycogenolysis was decreased in the diabetics, 1.3 +/- 0.2 as compared to 2.8 +/- 0.7 mumol/(kg body wt x min) in the controls (P < 0.05). Whole body glucose production was increased in the diabetics as compared to the controls, 11.1 +/- 0.6 versus 8.9 +/- 0.5 mumol/(kg body wt x min) (P < 0.05). Gluconeogenesis was consequently increased in the diabetics, 9.8 +/- 0.7 as compared to 6.1 +/- 0.5 mumol/(kg body wt x min) in the controls (P < 0.01), and accounted for 88 +/- 2% of total glucose production as compared with 70 +/- 6% in the controls (P < 0.05). IN CONCLUSION: increased gluconeogenesis is responsible for the increased whole body glucose production in type II diabetes mellitus after an overnight fast.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Gluconeogênese , Glicogênio Hepático/metabolismo , Fígado/metabolismo , Idoso , Feminino , Glucose/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade
19.
J Clin Invest ; 87(2): 561-70, 1991 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-1991839

RESUMO

Evidence is emerging for a direct role of glucose, independent of changes in insulin, in the regulation of cellular glucose transport and glucose utilization in vivo. In this study we investigate potential cellular and molecular mechanisms for this regulatory effect of glucose by determining how normalization of glycemia without insulin therapy in diabetic rats influences 3-O-methylglucose transport and the expression and translocation of two genetically distinct species of glucose transporters (GTs) in adipose cells. These results are compared with alterations in glucose disposal in vivo measured by euglycemic clamp. In rats rendered diabetic by 90% pancreatectomy, insulin-stimulated glucose transport in adipose cells is decreased 50% in parallel with reduced insulin-mediated glucose disposal in vivo. Levels of adipose/muscle GTs measured by immunoblotting are decreased in adipose cell subcellular membrane fractions, as are the corresponding mRNA levels assessed by Northern blotting of total adipose cell RNA. Normalization of blood glucose in diabetic rats with phlorizin, which impairs renal tubular glucose reabsorption and thus enhances glucose excretion, restores insulin-stimulated glucose transport in adipose cells and insulin-mediated glucose disposal in vivo. Importantly, levels of the adipose/muscle GT protein remain 43% reduced in the low-density microsomes in the basal state and 46% reduced in the plasma membranes in the insulin-stimulated state. Adipose/muscle GT mRNA levels remain approximately 50% depressed. Levels of the HepG2/brain GT protein and mRNA are unaltered by diabetes or phlorizin treatment. Thus, changes in ambient glucose independent of changes in ambient insulin can regulate the glucose transport response to insulin in isolated adipose cells and changes in responsiveness parallel alterations in glucose uptake in vivo. Since this effect can occur without alteration in the expression of the two species of glucose transporters present in adipose cells or in their translocation to the plasma membrane in response to insulin, it may result from changes in GT functional activity.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Glicemia/análise , Diabetes Mellitus Experimental/sangue , Expressão Gênica , Insulina/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Florizina/farmacologia , Tecido Adiposo/citologia , Animais , Northern Blotting , Peso Corporal , Encéfalo/metabolismo , Fracionamento Celular , Masculino , Proteínas de Transporte de Monossacarídeos/fisiologia , Músculos/metabolismo , RNA Mensageiro/análise , Ratos , Ratos Endogâmicos , Células Tumorais Cultivadas/metabolismo
20.
J Clin Invest ; 94(6): 2369-76, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-7989593

RESUMO

To determine the effect of insulin-dependent diabetes mellitus (IDDM) on rates and pathways of hepatic glycogen synthesis, as well as flux through hepatic pyruvate dehydrogenase, we used 13C-nuclear magnetic resonance spectroscopy to monitor the peak intensity of the C1 resonance of the glucosyl units of hepatic glycogen, in combination with acetaminophen to sample the hepatic UDP-glucose pool and phenylacetate to sample the hepatic glutamine pool, during a hyperglycemic-hyperinsulinemic clamp using [1-13C]-glucose. Five subjects with poorly controlled IDDM and six age-weight-matched control subjects were clamped at a mean plasma glucose concentration of approximately 9 mM and mean plasma insulin concentrations approximately 400 pM for 5 h. Rates of hepatic glycogen synthesis were similar in both groups (approximately 0.43 +/- 0.09 mumol/ml liver min). However, flux through the indirect pathway of glycogen synthesis (3 carbon units-->-->glycogen) was increased by approximately 50% (P < 0.05), whereas the relative contribution of pyruvate oxidation to TCA cycle flux was decreased by approximately 30% (P < 0.05) in the IDDM subjects compared to the control subjects. These studies demonstrate that patients with poorly controlled insulin-dependent diabetes mellitus have augmented hepatic gluconeogenesis and relative decreased rates of hepatic pyruvate oxidation. These abnormalities are not immediately reversed by normalizing intraportal concentrations of glucose, insulin, and glucagon and may contribute to postprandial hyperglycemia.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Glucose/metabolismo , Fígado/metabolismo , Acetaminofen/metabolismo , Adulto , Isótopos de Carbono , Ciclo do Ácido Cítrico , Feminino , Técnica Clamp de Glucose , Glutamina/análogos & derivados , Glutamina/análise , Glutamina/urina , Humanos , Hiperglicemia/metabolismo , Glicogênio Hepático/biossíntese , Espectroscopia de Ressonância Magnética , Masculino , Modelos Biológicos , Fenilacetatos/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Uridina Difosfato Glucose/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA