Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Cell Sci ; 136(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37676109

RESUMO

Derlin family members participate in the retrotranslocation of endoplasmic reticulum (ER) lumen proteins to the cytosol for ER-associated degradation (ERAD); however, the proteins facilitating this retrotranslocation remain to be explored. Using CRISPR library screening, we have found that derlin-2 and surfeit locus protein 4 (Surf4) are candidates to facilitate degradation of cyclooxygenase-2 (COX-2, also known as PTGS2). Our results show that derlin-2 acts upstream of derlin-1 and that Surf4 acts downstream of derlin-2 and derlin-1 to facilitate COX-2 degradation. Knockdown of derlin-2 or Surf4 impedes the ubiquitylation of COX-2 and the interaction of COX-2 with caveolin-1 (Cav-1) and p97 (also known as VCP) in the cytosol. Additionally, COX-2 degradation is N-glycosylation dependent. Although derlin-2 facilitates degradation of N-glycosylated COX-2, the interaction between derlin-2 and COX-2 is independent of COX-2 N-glycosylation. Derlin-1, Surf4 and p97 preferentially interact with non-glycosylated COX-2, whereas Cav-1 preferentially interacts with N-glycosylated COX-2, regardless of the N-glycosylation pattern. Collectively, our results reveal that Surf4 collaborates with derlin-2 and derlin-1 to mediate COX-2 translocation from the ER lumen to the cytosol. The derlin-2-derlin-1-Surf4-Cav-1 machinery might represent a unique pathway to accelerate COX-2 degradation in ERAD.

2.
Circ Res ; 131(1): 6-20, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35611699

RESUMO

BACKGROUND: The sino atrial node (SAN) is characterized by the microenvironment of pacemaker cardiomyocytes (PCs) encased with fibroblasts. An altered microenvironment leads to rhythm failure. Operable cell or tissue models are either generally lacking or difficult to handle. The biological process behind the milieu of SANs to evoke pacemaker rhythm is unknown. We explored how fibroblasts interact with PCs and regulate metabolic reprogramming and rhythmic activity in the SAN. METHODS: Tbx18 (T-box transcription factor 18)-induced PCs and fibroblasts were used for cocultures and engineered tissues, which were used as the in vitro models to explore how fibroblasts regulate the functional integrity of SANs. RNA-sequencing, metabolomics, and cellular and molecular techniques were applied to characterize the molecular signals underlying metabolic reprogramming and identify its critical regulators. These pathways were further validated in vivo in rodents and induced human pluripotent stem cell-derived cardiomyocytes. RESULTS: We observed that rhythmicity in Tbx18-induced PCs was regulated by aerobic glycolysis. Fibroblasts critically activated metabolic reprogramming and aerobic glycolysis within PCs, and, therefore, regulated pacemaker activity in PCs. The metabolic reprogramming was attributed to the exclusive induction of Aldoc (aldolase c) within PCs after fibroblast-PC integration. Fibroblasts activated the integrin-dependent mitogen-activated protein kinase-E2F1 signal through cell-cell contact and turned on Aldoc expression in PCs. Interruption of fibroblast-PC interaction or Aldoc knockdown nullified electrical activity. Engineered Tbx18-PC tissue sheets were generated to recapitulate the microenvironment within SANs. Aldoc-driven rhythmic machinery could be replicated within tissue sheets. Similar machinery was faithfully validated in de novo PCs of adult mice and rats, and in human PCs derived from induced pluripotent stem cells. CONCLUSIONS: Fibroblasts drive Aldoc-mediated metabolic reprogramming and rhythmic regulation in SANs. This work details the cellular machinery behind the complex milieu of vertebrate SANs and opens a new direction for future therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Animais , Reprogramação Celular , Técnicas de Cocultura , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Ratos , Nó Sinoatrial/metabolismo
3.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047400

RESUMO

Three waves of hematopoiesis occur in the mouse embryo. The primitive hematopoiesis appears as blood islands in the extra embryonic yolk sac at E7.5. The extra embryonic pro-definitive hematopoiesis launches in late E8 and the embryonic definitive one turns on at E10.5 indicated by the emergence of hemogenic endothelial cells on the inner wall of the extra embryonic arteries and the embryonic aorta. To study the roles of SCL protein isoforms in murine hematopoiesis, the SCL-large (SCL-L) isoform was selectively destroyed with the remaining SCL-small (SCL-S) isoform intact. It was demonstrated that SCL-S was specifically expressed in the hemogenic endothelial cells (HECs) and SCL-L was only detected in the dispersed cells after budding from HECs. The SCLΔ/Δ homozygous mutant embryos only survived to E10.5 with normal extra embryonic vessels and red blood cells. In wild-type mouse embryos, a layer of neatly aligned CD34+ and CD43+ cells appeared on the endothelial wall of the aorta of the E10.5 fetus. However, the cells at the same site expressed CD31 rather than CD34 and/or CD43 in the E10.5 SCLΔ/Δ embryo, indicating that only the endothelial lineage was developed. These results reveal that the SCL-S is sufficient to sustain the primitive hematopoiesis and SCL-L is necessary to launch the definitive hematopoiesis.


Assuntos
Células Endoteliais , Hematopoese , Camundongos , Animais , Hematopoese/genética , Desenvolvimento Embrionário/genética , Embrião de Mamíferos/metabolismo , Endotélio
4.
J Cell Mol Med ; 23(10): 6611-6621, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31436906

RESUMO

The contribution of soluble epoxide hydrolase (sEH) to atherosclerosis has been well defined. However, less is understood about the role of sEH and its underlying mechanism in the cholesterol metabolism of macrophages. The expression of sEH protein was increased in atherosclerotic aortas of apolipoprotein E-deficient mice, primarily in macrophage foam cells. Oxidized low-density lipoprotein (oxLDL) increased sEH expression in macrophages. Genetic deletion of sEH (sEH-/- ) in macrophages markedly exacerbated oxLDL-induced lipid accumulation and decreased the expression of ATP-binding cassette transporters-A1 (ABCA1) and apolipoprotein AI-dependent cholesterol efflux following oxLDL treatment. The down-regulation of ABCA1 in sEH-/- macrophages was due to an increase in the turnover rate of ABCA1 protein but not in mRNA transcription. Inhibition of phosphatase activity, but not hydrolase activity, of sEH decreased ABCA1 expression and cholesterol efflux following oxLDL challenge, which resulted in increased cholesterol accumulation. Additionally, oxLDL increased the phosphatase activity, promoted the sEH-ABCA1 complex formation and decreased the phosphorylated level of ABCA1 at threonine residues. Overexpression of phosphatase domain of sEH abrogated the oxLDL-induced ABCA1 phosphorylation and further increased ABCA1 expression and cholesterol efflux, leading to the attenuation of oxLDL-induced cholesterol accumulation. Our findings suggest that the phosphatase domain of sEH plays a crucial role in the cholesterol metabolism of macrophages.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Aterosclerose/enzimologia , Colesterol/metabolismo , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Células Espumosas/enzimologia , Macrófagos/enzimologia , Fosfoproteínas Fosfatases/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Apolipoproteínas E/deficiência , Aterosclerose/genética , Aterosclerose/metabolismo , Epóxido Hidrolases/antagonistas & inibidores , Células Espumosas/metabolismo , Metabolismo dos Lipídeos , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Ligação Proteica
5.
J Biomed Sci ; 26(1): 53, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307481

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) induces a complex sequence of apoptotic cascades that contribute to secondary neuronal damage. Tropomyosin-related kinase receptor B (TrkB) signaling plays a crucial role in promoting neuronal survival following brain damage. METHODS: The present study investigated the protective effects and underlying mechanisms of TrkB activation by the specific TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), in a model of collagenase-induced ICH and in neuronal cultures. Mice subjected to collagenase-induced ICH were intraperitoneally injected with either 7,8-DHF or vehicle 10 min after ICH and, subsequently, daily for 3 days. Behavioral studies, brain edema measurement, and histological analysis were conducted. Levels of TrkB signaling-related molecules and apoptosis-related proteins were analyzed by western blots. RESULTS: Treatment with 20 mg/kg 7,8-DHF significantly improved functional recovery and reduced brain damage up to 28 days post-ICH. Reduction in neuronal death, apoptosis, and brain edema were also observed in response to 7,8-DHF treatment at 3 days post-ICH. These changes were accompanied by a significant increase in the phosphorylation of TrkB and Akt (Ser473/Thr308) at 1 and 3 days, but had no effect on Erk 44/42 phosphorylation. 7,8-DHF also enhanced the phosphorylation of Ask-1 Ser967 and FOXO-1, downstream targets of Akt at 1 and 3 days. Moreover, 7,8-DHF increased brain-derived neurotrophic factor levels at 1 day. In primary cultured neurons stimulated with hemin, 7,8-DHF promoted survival and reduced apoptosis. Furthermore, delaying the administration of 7,8-DHF to 3 h post-ICH reduced brain tissue damage and neuronal death. CONCLUSIONS: Our findings demonstrate that the activation of TrkB signaling by 7,8-DHF protects against ICH via the Akt, but not the Erk, pathway. These data provide new insights into the role of TrkB signaling deficit in the pathophysiology of ICH and highlight TrkB/Akt as possible therapeutic targets in this disease.


Assuntos
Hemorragia Cerebral/tratamento farmacológico , Flavonas/farmacologia , Glicoproteínas de Membrana/agonistas , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Hemorragia Cerebral/induzido quimicamente , Colagenases/toxicidade , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
6.
J Cell Mol Med ; 22(11): 5573-5582, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30134043

RESUMO

Acute hepatic injury caused by inflammatory liver disease is associated with high mortality. This study examined the role of caveolin-1 (Cav-1) in lipopolysaccharide (LPS) and D-galactosamine (GalN)-induced fulminant hepatic injury in wild type and Cav-1-null (Cav-1-/- ) mice. Hepatic Cav-1 expression was induced post-LPS/GalN treatment in wild-type mice. LPS/GalN-treated Cav-1-/- mice showed reduced lethality and markedly attenuated liver damage, neutrophil infiltration and hepatocyte apoptosis as compared to wild-type mice. Cav-1 deletion significantly reduced LPS/GalN-induced caspase-3, caspase-8 and caspase-9 activation and pro-inflammatory cytokine and chemokine expression. Additionally, Cav-1-/- mice showed suppressed expression of Toll-like receptor 4 (TLR4) and CD14 in Kupffer cells and reduced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 in liver cells. Cav-1 deletion impeded LPS/GalN-induced inducible nitric oxide synthase expression and nitric oxide production and hindered nuclear factor-κB (NF-κB) activation. Taken together, Cav-1 regulated the expression of mediators that govern LPS-induced inflammatory signalling in mouse liver. Thus, deletion of Cav-1 suppressed the inflammatory response mediated by the LPS-CD14-TLR4-NF-κb pathway and alleviated acute liver injury in mice.


Assuntos
Caveolina 1/genética , Doença Hepática Induzida por Substâncias e Drogas/genética , Inflamação/genética , Fígado/efeitos dos fármacos , Animais , Apoptose/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Molécula 1 de Adesão Intercelular/genética , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Receptores de Lipopolissacarídeos/genética , Lipopolissacarídeos/toxicidade , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Camundongos , NF-kappa B/genética , Infiltração de Neutrófilos/genética , Óxido Nítrico Sintase Tipo II/genética , Transdução de Sinais/genética , Receptor 4 Toll-Like/genética , Fator de Transcrição RelA/genética
7.
Cell Physiol Biochem ; 50(4): 1216-1229, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30355932

RESUMO

BACKGROUND/AIMS: Olanzapine, an atypical antipsychotic drug, has therapeutic effects for schizophrenia. However, clinical reports indicate that patients taking atypical antipsychotic drugs are at high risk of metabolic syndrome with unclear mechanisms. We investigated the effect of olanzapine on atherosclerosis and the mechanisms in apolipoprotein E-null (apoE-/-) mice. METHODS: ApoE-/- mice were used as in vivo models. Western blot analysis was used to evaluate protein expression. Conventional assay kits were applied to assess the levels of cholesterol, triglycerides, free cholesterol, cholesteryl ester, fatty acids, glycerol, and cytokines. RESULTS: Daily treatment with olanzapine (3 mg/kg body weight) for four weeks increased mean arterial blood pressure and the whitening of brown adipose tissue in mice. In addition, olanzapine impaired aortic cholesterol homeostasis and exacerbated hyperlipidemia and aortic inflammation, which accelerated atherosclerosis in mice. Moreover, lipid accumulation in liver, particularly total cholesterol, free cholesterol, fatty acids, and glycerol, was increased with olanzapine treatment in apoE-/- mice by upregulating the expression of de novo lipid synthesis-related proteins and downregulating that of cholesterol clearance- or very low-density lipoprotein secretion-related proteins. CONCLUSION: Olanzapine may exacerbate atherosclerosis by deregulating hepatic lipid metabolism and worsening hyperlipidemia and aortic inflammation.


Assuntos
Antipsicóticos/farmacologia , Aorta/metabolismo , Aterosclerose/patologia , Benzodiazepinas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Tecido Adiposo Branco/patologia , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Aterosclerose/veterinária , Pressão Sanguínea/efeitos dos fármacos , Colesterol/análise , Colesterol/sangue , Ácidos Graxos/análise , Hiperlipidemias/metabolismo , Hiperlipidemias/patologia , Hiperlipidemias/veterinária , Inflamação , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Olanzapina , Triglicerídeos/sangue
8.
J Neuroinflammation ; 14(1): 230, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29178914

RESUMO

BACKGROUND: Inflammatory responses significantly contribute to neuronal damage and poor functional outcomes following intracerebral hemorrhage (ICH). Soluble epoxide hydrolase (sEH) is known to induce neuroinflammatory responses via degradation of anti-inflammatory epoxyeicosatrienoic acids (EET), and sEH is upregulated in response to brain injury. The present study investigated the involvement of sEH in ICH-induced neuroinflammation, brain damage, and functional deficits using a mouse ICH model and microglial cultures. METHODS: ICH was induced by injecting collagenase in both wild-type (WT) C57BL/6 mice and sEH knockout (KO) mice. WT mice were injected intracerebroventricularly with 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), a selective sEH inhibitor, 30 min before ICH. Expression of sEH in the hemorrhagic hemisphere was examined by immunofluorescence and Western blot analysis. The effects of genetic deletion or pharmacological inhibition of sEH by AUDA on neuroinflammatory responses, EET degradation, blood-brain barrier (BBB) permeability, histological damage, and functional deficits were evaluated. The anti-inflammatory mechanism of sEH inactivation was investigated in thrombin- or hemin-stimulated cultured microglia. RESULTS: ICH induced an increase in sEH protein levels in the hemorrhagic hemisphere from 3 h to 4 days. sEH was expressed in microglia/macrophages, astrocytes, neurons, and endothelial cells in the perihematomal region. Genetic deletion of sEH significantly attenuated microglia/macrophage activation and expression of inflammatory mediators and reduced EET degradation at 1 and 4 days post-ICH. Deletion of sEH also reduced BBB permeability, matrix metalloproteinase (MMP)-9 activity, neutrophil infiltration, and neuronal damage at 1 and 4 days. Likewise, administration of AUDA attenuated proinflammatory microglia/macrophage activation and EET degradation at 1 day post-ICH. These findings were associated with a reduction in functional deficits and brain damage for up to 28 days. AUDA also ameliorated neuronal death, BBB disruption, MMP-9 activity, and neutrophil infiltration at 1 day. However, neither gene deletion nor pharmacological inhibition of sEH altered the hemorrhage volume following ICH. In primary microglial cultures, genetic deletion or pharmacological inhibition of sEH by AUDA reduced thrombin- and hemin-induced microglial activation. Furthermore, AUDA reduced thrombin- and hemin-induced P38 MAPK and NF-κB activation in BV2 microglia cultures. Ultimately, AUDA attenuated N2A neuronal death that was induced by BV2 microglial conditioned media. CONCLUSIONS: Our results suggest that inhibition of sEH may provide a potential therapy for ICH by suppressing microglia/macrophage-mediated neuroinflammation.


Assuntos
Lesões Encefálicas/enzimologia , Hemorragia Cerebral/patologia , Epóxido Hidrolases/metabolismo , Inflamação/enzimologia , Animais , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Hemorragia Cerebral/complicações , Hemorragia Cerebral/enzimologia , Inflamação/etiologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
J Biomed Sci ; 24(1): 34, 2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28545516

RESUMO

BACKGROUND: Olfactory ensheathing cells (OEC), specialized glia that ensheathe bundles of olfactory nerves, have been reported as a favorable substrate for axonal regeneration. Grafting OEC to injured spinal cord appears to facilitate axonal regeneration although the functional recovery is limited. In an attempt to improve the growth-promoting properties of OEC, we transduced prostacyclin synthase (PGIS) to OEC via adenoviral (Ad) gene transfer and examined the effect of OEC with enhanced prostacyclin synthesis in co-culture and in vivo. Prostacyclin is a vasodilator, platelet anti-aggregatory and cytoprotective agent. RESULTS: Cultured OEC expressed high level of cyclooxygneases, but not PGIS. Infection of AdPGIS to OEC could selectively augument prostacyclin synthesis. When cocultured with either OEC or AdPGIS-OEC, neuronal cells were resistant to OGD-induced damage. The resulted OEC were further transplanted to the transected cavity of thoracic spinal cord injured (SCI) rats. By 6 weeks post-surgery, significant functional recovery in hind limbs occurred in OEC or AdPGIS-OEC transplanted SCI rats compared with nontreated SCI rats. At 10-12 weeks postgraft, AdPGIS-OEC transplanted SCI rats showed significantly better motor restoration than OEC transplanted SCI rats. Futhermore, regenerating fiber tracts in the distal spinal cord stump were found in 40-60% of AdPGIS-OEC transplanted SCI rats. CONCLUSIONS: Enhanced synthesis of prostacyclin in grafted OEC improved fiber tract regeneration and functional restoration in spinal cord injured rats. These results suggest an important potential of prostacyclin in stimulating OEC therapeutic properties that are relevant for neural transplant therapies.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Expressão Gênica , Oxirredutases Intramoleculares/genética , Neuroglia/fisiologia , Nervo Olfatório/fisiologia , Regeneração da Medula Espinal , Animais , Células Cultivadas , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredutases Intramoleculares/metabolismo , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica
10.
Biochim Biophys Acta ; 1852(11): 2339-51, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26319415

RESUMO

Endoplasmic reticulum (ER) stress is implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). TRC8 is an ER-resident E3 ligase with roles in modulating lipid and protein biosynthesis. In this study we showed that TRC8 expression was downregulated in steatotic livers of patients and mice fed with a high fat diet (HFD) or a methionine and choline deficient (MCD) diet. To investigate the impact of TRC8 downregulation on steatosis and the progression to non-alcoholic steatohepatitis (NASH), we placed TRC8 knockout (KO) mice and wild type (WT) controls on a HFD or MCD diet and the severities of steatosis and NASH developed were compared. We found that TRC8 deficiency did not significantly affect diet-induced steatosis. Nevertheless, MCD diet-induced NASH as characterized by hepatocyte death, inflammation and fibrosis were exacerbated in TRC8-KO mice. The hepatic ER stress response, as evidenced by increased eIF2α phosphorylation and expression of ATF4 and CHOP, and the level of activated caspase 3, an apoptosis indicator, were augmented by TRC8 deficiency. The hepatic ER stress and NASH induced in mice could be ameliorated by adenovirus-mediated hepatic TRC8 overexpression. Mechanistically, we found that TRC8 deficiency augmented lipotoxic-stress-induced unfolded protein response in hepatocytes by attenuating the arrest of protein translation and the misfolded protein degradation. These findings disclose a crucial role of TRC8 in the maintenance of ER protein homeostasis and its downregulation in steatotic liver contributes to the progression of NAFLD.

11.
J Neuroinflammation ; 13(1): 92, 2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27121378

RESUMO

BACKGROUND: Transient receptor potential ankyrin 1 (TRPA1) channel plays an important role in pain and inflammation. However, little is known about the significance of the TRPA1 channel in the pathophysiology of Alzheimer's disease (AD). METHODS: Wild-type (WT), TRPA1(-/-), amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic (APP/PS1 Tg) mice, the mouse model of AD, and APP/PS1 Tg/TRPA1(-/-) mice were used to examine the role of TRPA1 in pathogenesis of AD. Western blot was used for protein expression; immunohistochemistry was used for histological examination. The mouse behaviors were evaluated by locomotion, nesting building, Y-maze and Morris water maze tests; levels of interleukin (IL)-1ß, IL-4, IL-6 and IL-10 and the activities of protein phosphatase 2B (PP2B), NF-κB and nuclear factor of activated T cells (NFAT) were measured by conventional assay kits; Fluo-8 NW calcium (Ca(2+)) assay kit was used for the measurement of intracellular Ca(2+) level in primary astrocytes and HEK293 cells. RESULTS: The protein expression of TRPA1 channels was higher in brains, mainly astrocytes of the hippocampus, from APP/PS1 Tg mice than WT mice. Ablation of TRPA1-channel function in APP/PS1 Tg mice alleviated behavioral dysfunction, Aß plaque deposition and pro-inflammatory cytokine production but increased astrogliosis in brain lesions. TRPA1 channels were activated and Ca(2+) influx was elicited in both astrocytes and TRPA1-transfected HEK293 cells treated with fibrilized Aß1-42; these were abrogated by pharmacological inhibition of TRPA1 channel activity, disruption of TRPA1 channel function or removal of extracellular Ca(2+). Inhibition of TRPA1 channel activity exacerbated Aß1-42-induced astrogliosis but inhibited Aß1-42-increased PP2B activation, the production of pro-inflammatory cytokines and activities of transcriptional factors NF-κB and NFAT in astrocytes and in APP/PS1 Tg mice. Pharmacological inhibition of PP2B activity diminished the fibrilized Aß1-42-induced production of pro-inflammatory cytokines, activation of NF-κB and NFAT and astrogliosis in astrocytes. CONCLUSIONS: TRPA1 - Ca(2+) - PP2B signaling may play a crucial role in regulating astrocyte-derived inflammation and pathogenesis of AD.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Comportamento Animal , Western Blotting , Encéfalo/metabolismo , Modelos Animais de Doenças , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/fisiologia , Canal de Cátion TRPA1
12.
Arch Toxicol ; 90(1): 181-90, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25270622

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP) is associated with atherosclerosis-related cardiovascular disease complications, but we lack direct evidence of its unfavorable effect on atherogenesis. In this study, we aimed to clarify in vivo and in vitro the contribution of DEHP to the development of atherosclerosis and its underlying mechanisms. Apolipoprotein E-deficient (apoE(-/-)) mice chronically treated with DEHP for 4 weeks showed exacerbated hyperlipidemia, systemic inflammation, and atherosclerosis. In addition, DEHP promoted low-density lipoprotein (LDL) oxidation, which led to inflammation in endothelial cells as evidenced by increased protein expression of pro-inflammatory mediators. Furthermore, chronic DEHP treatment increased hepatic cholesterol accumulation by downregulating the protein expression of key regulators in cholesterol clearance including LDL receptor, cholesterol 7α-hydrolase, ATP-binding cassette transporter G5 and G8, and liver X receptor α. Moreover, the adiposity and inflammation of white adipose tissues were promoted in DEHP-treated apoE(-/-) mice. In conclusion, DEHP may disturb cholesterol homeostasis and deregulate the inflammatory response, thus leading to accelerated atherosclerosis.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/induzido quimicamente , Dietilexilftalato/toxicidade , Plastificantes/toxicidade , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Apolipoproteínas E/genética , Aterosclerose/sangue , Aterosclerose/genética , Aterosclerose/patologia , Linhagem Celular , Colesterol/sangue , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Predisposição Genética para Doença , Humanos , Mediadores da Inflamação/sangue , Lipoproteínas LDL/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Knockout , Fenótipo , Medição de Risco , Fatores de Tempo
13.
Arch Toxicol ; 90(5): 1211-24, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25995009

RESUMO

Long-term exposure to di-(2-ethylhexyl) phthalate (DEHP) is highly associated with carcinogenicity, fetotoxicity, psychological disorders and metabolic diseases, but the detrimental effects and mechanisms are not fully understood. We investigated the effect of exposing mouse mothers to DEHP, and the underlying mechanism, on blood pressure, obesity and cholesterol metabolism as well as psychological and learning behaviors in offspring. Tail-cuff plethysmography was used for blood pressure measurement; Western blot used was for phosphorylation and expression of protein; hematoxylin and eosin staining, Nissl staining and Golgi staining were used for histological examination. The serum levels of cholesterol, triglycerides and glucose were measured by blood biochemical analysis. Hepatic cholesterol and triglyceride levels were assessed by colorimetric assay kits. Offspring behaviors were evaluated by open-field activity, elevated plus maze, social preference test and Morris water maze. Maternal DEHP exposure deregulated the phosphorylation of endothelial nitric oxide synthase and upregulated angiotensin type 1 receptor in offspring, which led to increased blood pressure. It led to obesity in offspring by increasing the size of adipocytes in white adipose tissue and number of adipocytes in brown adipose tissue. It increased the serum level of cholesterol in offspring by decreasing the hepatic capacity for cholesterol clearance. The impaired social interaction ability induced by maternal DEHP exposure might be due to abnormal neuronal development. Collectively, our findings provide new evidence that maternal exposure to DEHP has a lasting effect on the physiological functions of the vascular system, adipose tissue and nerve system in offspring.


Assuntos
Adiposidade/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Colesterol/sangue , Dietilexilftalato/toxicidade , Hipertensão/induzido quimicamente , Exposição Materna , Efeitos Tardios da Exposição Pré-Natal , Comportamento Social , Animais , Biomarcadores/sangue , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Feminino , Hipertensão/fisiopatologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Gravidez
14.
J Biomed Sci ; 22: 31, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25971314

RESUMO

BACKGROUND: Adenoviral vector is an efficient tool for gene transfer. Protein expression is regulated by a number of factors, but the regulation by gene copy number remains to be investigated further. RESULTS: Assessed by flow cytometry, we demonstrated a significant linear correlation between average fluorescence intensity of green fluorescent protein (GFP) and a wide range of multiplicity of infection (MOI), spanning from 0.01 to 200. Average GFP intensity was calculated by mean fluorescence intensity (MFI) × percentage of infection (POI) (MFI × POI) and the correlation was observed in cells transduced with GFP-expressing adenoviral vector driven either by a cytomegalovirus (CMV) promoter for 3 to 6 h or by a human phosphoglycerate kinase (PGK) promoter for 18 to 24 h. Factors impacting this linear correlation include MOI of viral vector, strength of promoter driving GFP expression, cell type transduced and incubation time after gene transfer. We also found that weak GFP signals could be interfered by background signals, whereas strong GFP signals could overshot the detection limitation of the flow cytometer and resulted in a deviation from linearity which was prevented by adjusting the setting in flow cytometer. Moreover, we compared promoter strength as measured by MFI × POI and found that the relative activity of CMV promoter to PGK promoter was 20 to 47 folds in A549 cells and 32 to > 100 folds in H1299 cells. CONCLUSIONS: The linear correlation between MFI × POI and a wide range of adenoviral MOI provides an efficient method to investigate factors regulating protein expression and to estimate virus titers.


Assuntos
Infecções por Adenoviridae/virologia , Adenoviridae/fisiologia , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Regiões Promotoras Genéticas , Linhagem Celular Tumoral , Citomegalovirus/fisiologia , Citometria de Fluxo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Fosfoglicerato Quinase/metabolismo
15.
J Biol Chem ; 288(46): 33462-9, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24089527

RESUMO

Caveolin-1 (Cav-1) interacts with and mediates protein trafficking and various cellular functions. Derlin-1 is a candidate for the retrotranslocation channel of endoplasmic reticulum proteins. However, little is known about how Derlin-1 mediates glycosylated protein degradation. Here, we identified Cav-1 as a key player in Derlin-1- and p97-mediated cyclooxygenase 2 (COX-2) ubiquitination and degradation. Derlin-1 augmented the interaction of Cav-1 and COX-2 and mediated the degradation of COX-2 in a COX-2 C terminus-dependent manner. Suppression of Cav-1 decreased the ubiquitination of COX-2, and mutation of Asn-594 to Ala to disrupt N-glycosylation at the C terminus of COX-2 reduced the interaction of COX-2 with Cav-1 but not Derlin-1. Moreover, suppression of p97 increased the ubiquitination of COX-2 and up-regulated COX-2 but not COX-1. Cav-1 enhanced the interaction of p97 with Ufd1 and Derlin-1 and collaborated with p97 to interact with COX-2. Cav-1 may be a cofactor in the interaction of Derlin-1 and N-glycosylated COX-2 and may facilitate Derlin-1- and p97 complex-mediated COX-2 ubiquitination, retrotranslocation, and degradation.


Assuntos
Adenosina Trifosfatases/metabolismo , Caveolina 1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo-Oxigenase 2/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Proteólise , Ubiquitinação/fisiologia , Proteínas Adaptadoras de Transporte Vesicular , Adenosina Trifosfatases/genética , Animais , Caveolina 1/genética , Proteínas de Ciclo Celular/genética , Ciclo-Oxigenase 2/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Camundongos , Complexos Multiproteicos/genética , Transporte Proteico/fisiologia , Proteínas/genética , Proteínas/metabolismo , Proteína com Valosina
16.
J Cell Physiol ; 229(1): 117-25, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23836449

RESUMO

Excess nitric oxide (NO) promotes the progression of atherosclerosis by increasing the oxidation of low-density lipoprotein (LDL) and inflammatory responses. However, little is known about the impact of NO and its underlying molecular mechanism on lipid metabolism of macrophage foam cells. In this study, Oil-red O staining, cholesterol and triglyceride assay, Dil-oxidized LDL (oxLDL) binding assay, cholesterol efflux assay, real-time RT-PCR and Western blot analysis were used for in vitro experiments. Apolipoprotein E-deficient (apoE(-/-) ) and apoE and inducible nitric oxide synthase-deficient (apoE(-/-) iNOS(-/-) ) mice were as our in vivo models. Treatment with S-nitroso-N-acetyl-D,L-penicillamine (SNAP), an NO donor, exacerbated oxLDL-induced cholesterol accumulation in macrophages, because of reduced efficacy of cholesterol efflux. In addition, SNAP decreased the protein level of ATP-binding cassette transporter A1 (ABCA1) without affecting scavenger receptor type A (SR-A), CD36, ABCG1, or SR-B1 levels. This SNAP-mediated downregulation of ABCA1 was mainly through the effect of NO but not peroxynitrite. Furthermore, the SNAP-downregulated ABCA1 was due to the decrease in the liver X receptor α (LXRα)-dependent transcriptional regulation. Moreover, genetic deletion of iNOS increased the serum capacity of reverse cholesterol efflux and protein expression of LXRα, ABCA1, and SR-BI in aortas and retarded atherosclerosis in apoE(-/-) mice. Our findings provide new insights in the pro-atherogenic effect of excess NO on cholesterol metabolism in macrophages.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Aterosclerose/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Óxido Nítrico/metabolismo , Receptores Nucleares Órfãos/metabolismo , Transportador 1 de Cassete de Ligação de ATP/biossíntese , Animais , Apolipoproteínas E/genética , Aterosclerose/induzido quimicamente , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Lipoproteínas LDL , Fígado/efeitos dos fármacos , Fígado/metabolismo , Receptores X do Fígado , Macrófagos/efeitos dos fármacos , Camundongos , Óxido Nítrico/toxicidade , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores Nucleares Órfãos/biossíntese , Oxirredução , S-Nitroso-N-Acetilpenicilamina/administração & dosagem
17.
BMC Cancer ; 14: 425, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24923353

RESUMO

BACKGROUND: 14-3-3σ is implicated in promoting tumor development of various malignancies. However, the clinical relevance of 14-3-3σ in hepatocellular carcinoma (HCC) tumor progression and modulation and pathway elucidation remain unclear. METHODS: We investigated 14-3-3σ expression in 109 HCC tissues by immunohistochemistry. Overexpression and knockdown experiments were performed by transfection with cDNA or siRNA. Protein expression and cell migration were determined by Western blot and Boyden chamber assay. RESULTS: In this study, we found that 14-3-3σ is abundantly expressed in HCC tumors. Stable or transient overexpression of 14-3-3σ induces the expression of heat shock factor-1α (HSF-1α) and heat shock protein 70 (HSP70) in HCC cells. Moreover, expression of 14-3-3σ significantly correlates with HSF-1α/HSP70 in HCC tumors and both 14-3-3σ and HSP70 overexpression are associated with micro-vascular thrombi in HCC patients, suggesting that 14-3-3σ/HSP70 expression is potentially involved in cell migration/invasion. Results of an in vitro migration assay indicate that 14-3-3σ promotes cell migration and that 14-3-3σ-induced cell migration is impaired by siRNA knockdown of HSP70. Finally, 14-3-3σ-induced HSF-1α/HSP70 expression is abolished by the knockdown of ß-catenin or activation of GSK-3ß. CONCLUSIONS: Our findings indicate that 14-3-3σ participates in promoting HCC cell migration and tumor development via ß-catenin/HSF-1α/HSP70 pathway regulation. Thus, 14-3-3σ alone or combined with HSP70 are potential prognostic biomarkers for HCC.


Assuntos
Proteínas 14-3-3/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Exorribonucleases/metabolismo , Proteínas de Choque Térmico HSP70/biossíntese , Neoplasias Hepáticas/genética , Idoso , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Movimento Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Fatores de Transcrição de Choque Térmico , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
18.
J Gastroenterol Hepatol ; 29(3): 494-501, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24219143

RESUMO

BACKGROUND AND AIM: Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders with unclear etiology and mechanism(s). Glycine N-methyltransferase (GNMT) plays a central role in inflammatory diseases such as hepatitis and atherosclerosis. However, little is known about the impact of GNMT and the involved mechanism in the pathogenesis of IBD. In the current study, we investigated the role of GNMT in the mouse model of dextran sulfate sodium (DSS)-induced colitis. METHODS: Protein expression was determined by Western blotting or immunohistochemistry. Histopathology was examined by hematoxylin and eosin staining. Levels of pro-inflammatory cytokines were evaluated by ELISA kits. RESULTS: GNMT was expressed in the epithelium of the colon under normal conditions, and with DSS treatment, its expression was predominant in infiltrated leukocytes of lesions. Mice with genetic deletion of GNMT (GNMT(-/-) ) showed increased susceptibility to DSS induction of colitis, as revealed by the progression of colitis. Additionally, severe colonic inflammation, including increased crypt loss, leukocyte infiltration, and hemorrhage, was greater with DSS treatment in GNMT(-/-) than wild-type mice. Furthermore, the expression of adhesion molecule and inflammatory mediators in the colon was significantly higher with DSS treatment in GNMT(-/-) than wild-type mice. Moreover, loss of GNMT decreased cell apoptosis in colitis lesions with DSS treatment. CONCLUSIONS: Collectively, our findings suggest that GNMT may be a crucial molecule in the pathogenesis of DSS-induced colitis. This finding may provide new information for a potential therapeutic target in treating IBD.


Assuntos
Colite Ulcerativa/genética , Glicina N-Metiltransferase/genética , Glicina N-Metiltransferase/fisiologia , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Glicina N-Metiltransferase/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular
19.
Brain Pathol ; : e13244, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308041

RESUMO

Intracerebral hemorrhage (ICH) induces a complex sequence of apoptotic cascades and inflammatory responses, leading to neurological impairment. Transient receptor potential vanilloid 1 (TRPV1), a nonselective cation channel with high calcium permeability, has been implicated in neuronal apoptosis and inflammatory responses. This study used a mouse ICH model and neuronal cultures to examine whether TRPV1 activation exacerbates brain damage and neurological deficits by promoting neuronal apoptosis and neuroinflammation. ICH was induced by injecting collagenase in both wild-type (WT) C57BL/6 mice and TRPV1-/- mice. Capsaicin (CAP; a TRPV1 agonist) or capsazepine (a TRPV1 antagonist) was administered by intracerebroventricular injection 30 min before ICH induction in WT mice. The effects of genetic deletion or pharmacological inhibition of TRPV1 using CAP or capsazepine on motor deficits, histological damage, apoptotic responses, blood-brain barrier (BBB) permeability, and neuroinflammatory reactions were explored. The antiapoptotic mechanisms and calcium influx induced by TRPV1 inactivation were investigated in cultured hemin-stimulated neurons. TRPV1 expression was upregulated in the hemorrhagic brain, and TRPV1 was expressed in neurons, microglia, and astrocytes after ICH. Genetic deletion of TRPV1 significantly attenuated motor deficits and brain atrophy for up to 28 days. Deletion of TRPV1 also reduced brain damage, neurodegeneration, microglial activation, cytokine expression, and cell apoptosis at 1 day post-ICH. Similarly, the administration of CAP ameliorated brain damage, neurodegeneration, brain edema, BBB permeability, and cytokine expression at 1 day post-ICH. In primary neuronal cultures, pharmacological inactivation of TRPV1 by CAP attenuated neuronal vulnerability to hemin-induced injury, suppressed apoptosis, and preserved mitochondrial integrity in vitro. Mechanistically, CAP reduced hemin-stimulated calcium influx and prevented the phosphorylation of CaMKII in cultured neurons, which was associated with reduced activation of P38 and c-Jun NH2 -terminal kinase mitogen-activated protein kinase signaling. Our results suggest that TRPV1 inhibition may be a potential therapy for ICH by suppressing mitochondria-related neuronal apoptosis.

20.
Crit Care Med ; 41(1): 120-32, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23222262

RESUMO

OBJECTIVE: The molecular mechanisms underlying lung inflammation in toxic smoke inhalation injury are unknown. We investigated the signaling pathway responsible for the induction of interleukin 8 by wood smoke extract in lung epithelial cells and lung inflammation induced by wood smoke exposure in mice. DESIGN: A randomized, controlled study. SETTING: A research laboratory. INTERVENTIONS AND MAIN RESULTS: Exposure of primary human bronchial epithelial cells to wood smoke extract sequentially activated NADPH oxidase and increased intracellular reactive oxygen species level; activated AMP-activated protein kinase, extracellular signal-regulated kinase and Jun N-terminal kinase (two mitogen-activated protein kinases), and nuclear factor-κB and signal transducer and activator of transcription protein 3 (two transcription factors); and induced interleukin-8. Inhibition of NADPH oxidase activation with apocynin or siRNA targeting p47(phox ) (a subunit of NADPH oxidase) attenuated the increased intracellular reactive oxygen species level, AMP-activated protein kinase activation, and interleukin-8 induction. Removal of intracellular reactive oxygen species by N-acetyl-cysteine reduced the activation of AMP-activated protein kinase, extracellular signal-regulated kinase and Jun N-terminal kinase, and interleukin-8 induction. Prevention of AMP-activated protein kinase activation by Compound C or AMP-activated protein kinase siRNA lessened the activation of Jun N-terminal kinase, extracellular signal-regulated kinase, nuclear factor-κB, signal transducer and activator of transcription protein 3 and interleukin-8 induction. Inhibition of Jun N-terminal kinase and extracellular signal-regulated kinase activation by inhibitors reduced the activation of nuclear factor-κB and signal transducer and activator of transcription protein 3 and interleukin-8 induction. Abrogation of nuclear factor-κB and signal transducer and activator of transcription protein 3 activation by inhibitors attenuated the interleukin-8 induction. Additionally, acute exposure of mice to wood smoke promoted AMP-activated protein kinase phosphorylation and expression of macrophage inflammatory protein 2 (an interleukin-8 homolog) in lung epithelial cells and lungs and lung inflammation, all of which were reduced by Compound C treatment. CONCLUSIONS: Interleukin-8 induction by wood smoke extract in lung epithelial cells is mediated by novel NADPH oxidase-dependent, reactive oxygen species-sensitive AMP-activated protein kinase signaling with Jun N-terminal kinase and extracellular signal-regulated kinase as the downstream kinases and nuclear factor-κB and signal transducer and activator of transcription protein 3 as the downstream transcription factors. This AMP-activated protein kinase signaling is likely important for inducing lung inflammation with toxic smoke exposure in mice.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Interleucina-8/metabolismo , Sistema de Sinalização das MAP Quinases , Lesão por Inalação de Fumaça/enzimologia , Lesão por Inalação de Fumaça/imunologia , Animais , Células Cultivadas , Humanos , Inflamação/enzimologia , Inflamação/imunologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/metabolismo , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/imunologia , Lesão por Inalação de Fumaça/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA