Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Appl Microbiol ; 132(4): 3181-3188, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34820970

RESUMO

AIM: This study aimed to determine the potential prophylactic efficacy of probiotic individually and/or in combination with anti-coccidial drug on the performance and immunity of broilers under an induced coccidial infection over a 28-day of experimental trial. METHODS: One hundred and eighty 1-day-old Cobb broiler chicks were randomly divided into five groups, included control group (CG), control positive group (CPG), probiotic-treated group (Prob), diclazuril-treated group (Dic), and probiotic + diclazuril-treated group (Prob + Dic). On day 21 of age, all birds, except group CG, were orally inoculated with 1 ml of tap water containing 25,000 Eimeria tenella sporulated oocysts. RESULTS: Our results showed that the probiotic treatment did not influence pre-challenge body weight, feed intake and feed conversion ratio (FCR). During the post-challenge period, chickens in groups probiotic and diclazuril individually and in combination exhibited higher body weight and lower (better) FCR, reduced oocyst shedding (throughout the day four, five, six and seven post-infection), cecal lesions and mortality compared with control positive chickens. Moreover, Compared to CPG group, Prob + Dic group showed increased (p < 0.05) serum levels of interleukin-10 (IL-10) and immunoglobulin M (IgM) and decreased the concentrations of interferon gamma (IFN-γ). On the other hand, individual treatment with probiotic exhibited highest serum levels of IL-10 and IgM, while diclazuril alone increased the blood concentrations of IL-10 and decreased the levels of IFN-γ compared to control positive group; however, there was no significant effect of Prob on IFN-γ, Dic on IgM and all groups on interleukin-17. CONCLUSION: In conclusion, supplementation of probiotic, with and/or without anti-coccidial drug, enhances immunity and inhibits the negative effects of Eimeria infection. SIGNIFICANCE AND IMPACT OF THE STUDY: This study reveals the anti-coccidial mechanisms of probiotic in the presence and absence of anti-coccidial drug in preventing the coccidia infection.


Assuntos
Coccidiose , Eimeria , Doenças das Aves Domésticas , Probióticos , Ração Animal , Animais , Galinhas , Coccidiose/tratamento farmacológico , Coccidiose/prevenção & controle , Coccidiose/veterinária , Dieta/veterinária , Nitrilas , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/prevenção & controle , Triazinas
2.
BMC Vet Res ; 18(1): 43, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042532

RESUMO

BACKGROUND: African swine fever virus (ASFV), classical swine fever virus (CSFV) and atypical porcine pestivirus (APPV) have caused great economic losses to the swine industry in China. Since coinfections of ASFV, CSFV and APPV occur in certain pig herds, it is necessary to accurately and differentially detect these pathogens in field-collected samples. In this study, a one-step multiplex real-time quantitative reverse transcription-polymerase chain reaction (multiplex qRT-PCR) was developed for the simultaneous and differential detection of ASFV, CSFV and APPV. RESULTS: The one-step multiplex qRT-PCR presented here was able to simultaneously detect ASFV, CSFV and APPV but could not amplify other viruses, including porcine circovirus type 2 (PCV2), pseudorabies virus (PRV), porcine reproductive and respiratory syndrome virus (PRRSV), foot-and-mouth disease virus (FMDV), porcine parvovirus (PPV), porcine epidemic diarrhoea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine rotavirus (PRoV), porcine deltacoronavirus (PDCoV), border disease virus (BDV), bovine viral diarrhoea virus type 1 (BVDV-1), BVDV-2, etc. The limit of detection (LOD) of the assay was 2.52 × 101 copies/µL for ASFV, CSFV and APPV. A repeatability test using standard recombinant plasmids showed that the intra- and interassay coefficients of variation (CVs) were less than 2%. An assay of 509 clinical samples collected in Guangxi Province, southern China, from October 2018 to December 2020 showed that the positive rates of ASFV, CSFV and APPV were 45.58, 12.57 and 3.54%, respectively, while the coinfection rates of ASFV and CSFV, ASFV and APPV, CSFV and APPV were 4.91, 1.38, 0.98%, respectively. Phylogenetic analysis based on the nucleotide sequences of the partial ASFV p72 gene showed that all ASFV strains from Guangxi Province belonged to genotypes I and II. CONCLUSION: A one-step multiplex qRT-PCR with high specificity, sensitivity and repeatability was successfully developed for the simultaneous and differential detection of ASFV, CSFV and APPV.


Assuntos
Vírus da Febre Suína Africana , Vírus da Febre Suína Clássica , Peste Suína Clássica , Pestivirus , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Doenças dos Suínos , Vírus da Febre Suína Africana/genética , Animais , China/epidemiologia , Peste Suína Clássica/diagnóstico , Vírus da Febre Suína Clássica/genética , Pestivirus/genética , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/diagnóstico
3.
Exp Appl Acarol ; 87(1): 67-79, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35737253

RESUMO

Ornithonyssus sylviarum (Acari: Macronyssidae) is a common ectoparasite that feeds on the blood of poultry. Following infestation, this mite will cause symptoms such as weight loss, anemia, and decreased egg production. To explore green and safe drugs for the prevention and treatment of O. sylviarum, this study evaluated the effects of ethanol extracts of seven Chinese medicinal herbs-Leonurus artemisia (motherwort), Illicium verum (star anise), Cinnamomum cassia (cinnamon), Hibiscus syriacus, Artemisia argyi (Chinese mugwort), Taraxacum sp. (dandelion), and Syzygium aromaticum (clove)-on O. sylviarum at different life stages. The results showed that different methods of administration affected the acaricidal efficacy of these plant extracts on O. sylviarum. After 6 h of administration with the fumigation method, the acaricidal efficacy of S. aromaticum on adults, nymphs and larvae of O. sylviarum reached 100%. 30 min after administration with the infiltration method, S. aromaticum, H. syriacus and L. artemisia showed acaricidal effects on adults and nymphs of O. sylviarum reaching 100%. In another experiment evaluating the inhibition of egg hatching of O. sylviarum with alcohol extracts of these seven herbs, at 48 h after treatment, A. argyi and C. cassia showed inhibition rates of 19.4%. The results of this study indicate that S. aromaticum induced mortality at all stages of O. sylviarum, whereas A. argyi was found to be the most effective at inhibiting the mite's egg hatching among the seven herbs. These herbs can therefore be used as potential substitutes for chemical pesticides to prevent and control O. sylviarum. These results provide practical knowledge for the control of O. sylviarum.


Assuntos
Acaricidas , Infestações por Ácaros , Ácaros , Plantas Medicinais , Acaricidas/farmacologia , Animais , China , Etanol/farmacologia , Infestações por Ácaros/parasitologia , Ácaros/fisiologia , Ninfa , Extratos Vegetais/farmacologia
4.
Molecules ; 27(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36557783

RESUMO

Sophorae tonkinensis Radix et Rhizoma (STR) is a traditional Chinese herbal medicine. STR can reduce aminotransferase activity; however, the specific mechanism remains unclear. Here, we explored the potential therapeutic effects and hepatoprotective mechanism of STR on liver damage in mice. The chemical characteristics of the extract were characterized using ultra-high-performance liquid chromatography-tandem mass spectrometry fingerprinting, and its antioxidant capacity was verified using free radical scavenging tests. Forty-eight Kunming mice were randomly assigned into six groups. The model was made after the corresponding drug was given. The results showed that the STR water extract pretreatment significantly reduced serum aminotransferase and related liver function indicators compared with that in the model group. Furthermore, the STR water extract pretreatment significantly inhibited the apoptosis of liver cells, the level of liver high-mobility group box 1 (HMGB1), and inflammatory factors in hepatic tissue compared with that in the model group, and significantly downregulated the levels of toll-like receptor 4 (TLR4), Myeloid differentiation factor 88 (MyD88), and nuclear factor kappa B (NF-κB) compared with those in the model group. Overall, the STR water extract exerted a significant protective effect on CCL4-induced acute liver injury in this study, and the accurate active ingredients of the STR water extract will be explored in the near future.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Sophora , Camundongos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Tetracloreto de Carbono/toxicidade , Sophora/química , Fígado , Transaminases , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
5.
Molecules ; 27(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35408435

RESUMO

Abrus cantoniensis is a Chinese herbal medicine with efficacy in clearing heat and detoxification, as well as relieving liver pain. The whole plant, except the seeds, can be used and consumed. Flavonoids have been found in modern pharmacological studies to have important biological activities, such as anti-inflammatory, antibacterial and antioxidant properties. The antibacterial and antioxidant bioactivities of the total flavonoids of Abrus cantoniensis (ATF) have been widely reported in national and international journals, but there are fewer studies on their anti-inflammatory effects. The present study focused on the optimization of the ultrasonic extraction process of ATF by response surface methodology and the study of its anti-inflammatory effects in vitro and in vivo. The results showed that the factors that had a great impact on the ATF extraction were the material-to-liquid ratio, ultrasonic extraction cycles and ethanol concentration. The best extraction process used a material-to-liquid ratio of 1:47, ultrasonic extraction cycles of 4 times, an ethanol concentration of 50%, an ultrasonic extraction time of 40 min and an ultrasonic power of 125 W. Under these conditions, the actual extraction rate of total flavonoids was 3.68%, which was not significantly different from the predicted value of 3.71%. In an in vitro anti-inflammatory assay, ATF was found to be effective in alleviating LPS (lipopolysaccharide)-induced inflammation in mouse peritoneal macrophages. In an in vivo anti-inflammatory assay, ATF was found to have a significant inhibitory effect on xylene-induced ear swelling in mice and cotton ball granuloma in mice, and the inhibitory effect was close to that of the positive control drug dexamethasone. This may provide a theoretical basis for the further development of the medicinal value of Abrus cantoniensis.


Assuntos
Abrus , Animais , Antibacterianos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Etanol , Flavonoides/farmacologia , Camundongos , Extratos Vegetais/farmacologia , Ultrassom
6.
Pharmacol Res ; 170: 105694, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34087350

RESUMO

As an effective drug against acute enteritis diarrhea, Gegen Qinlian decoction (GQD) has a history of 2000 years. However, the potential molecular mechanism through which GQD could protect intestinal barrier from ulcerative colitis (UC) still remains undefined. As an important part of the homeostasis of the colon, gut microbiota is closely related to the dynamic evolution of the surrounding environment and the adjustment of dietary structure. At present, the effectiveness and mechanism of Jiawei Gegen Qinlian decoction against UC in different dietary environments are not clear. Here, the main active components of Jiawei Gegen Qinlian Decoction (PBM), were selected to construct a reasonable and effective compound scheme. We adopted "5% dextran sulfate sodium (DSS)" and "high temperature and humidity + high sugar and high fat + alcohol + 5%DSS" to induce UC rat models in general environment and UC rat models in Lingnan area, respectively. Then, we examined the therapeutic effects of PBM (89.96 mg/kg and 179.92 mg/kg) on two kinds of UC rats. The role of gut microbiota in the anti-UC effect of PBM was identified by intestinal flora consumption and fecal microbiota transplantation (FMT) experiments. Subsequently, we monitored the alterations of gut microbiota and fecal metabolism in the rat colon by 16Sr DNA technique and targeted metabonomics, respectively. The colon inflammation of the PBM-treated and the FMT-treated rats both showed significant relief, as evidenced by a reduction in body weight loss, bloody stool, diarrhea, disease activity index (DAI) score, shortening of colon length as well as decreased colon histology damage. Interestingly enough, the depletion of intestinal flora took away the protective effect of PBM, confirming the importance of intestinal flora in the anti-UC effect of PBM. Then our findings suggested that PBM could not only regulate the gut microbiota by increasing Akkermansia and Romboutsia but also decrease Escherichia-Shigella. More importantly, PBM could increase the production of propionate and total short-chain fatty acids (SCFAs) in colitis rats, regulate medium and long chain fatty acids (M-LCFAs), maintain bile acids (BAs) homeostasis, and regulate amino acids (AAs) metabolism. The transformation of intestinal environment might be related to the upregulation of anti-inflammation, anti-oxidation and tight junction protein expression in colonic mucosa. In summary, PBM showed potential for anti-UC activity through gut microbiota dependence and was expected to be a complementary and alternative medicine herb therapy.


Assuntos
Anti-Inflamatórios/farmacologia , Bactérias/efeitos dos fármacos , Colite Ulcerativa/tratamento farmacológico , Colo/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Fármacos Gastrointestinais/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Colite Ulcerativa/metabolismo , Colite Ulcerativa/microbiologia , Colite Ulcerativa/patologia , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Disbiose , Feminino , Mediadores da Inflamação/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley
7.
Trop Anim Health Prod ; 53(5): 497, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34609608

RESUMO

To explore the potential alternative of anti-coccidials, we investigated the therapeutic efficacy of dietary Piper sarmentosum extract (PSE) on induced coccidia infection in chickens. A total of 96-day-old chickens were randomly distributed to 1 of 3 treatment groups, including (1) control negative untreated uninfected (CN), (2) control positive untreated infected (CP), and (3) Piper sarmentosum (P. sarmentosum) extract-treated infected group (PSE). Our results demonstrated that E. tenella challenged untreated group showed a reduction (P < 0.05) in post-infection (PI) body weight compared to control negative group. However, supplementation of P. sarmentosum extract had no significant effects on body weight and cecal lesions compared with control positive group. Infected chickens fed PSE diet decreased (P < 0.05) the bloody diarrhea scores and oocyst shedding (during the day 5 to 8 post-infection) than that of CP chickens. E. tenella-challenged chickens upregulated (P < 0.05) the mRNA expression of IL-8 and Bcl-2 compared to PSE chickens, while IFN-γ compared to CN chickens. On the other hand, treatment of P. sarmentosum extract tended to increase (P < 0.05) the transcription patterns of IL-4, IL-10, CLDN 1, SOD 1, and Bax with the comparison of control positive group; however, there were no significant effects on IL-8, ZO 1, and CAT expression between the PSE and CP groups. Collectively, these findings elaborated that dietary P. sarmentosum extract exhibit potential anti-coccidial effects in controlling the coccidia infection in chickens.


Assuntos
Coccidiose , Eimeria tenella , Piper , Doenças das Aves Domésticas , Animais , Galinhas , Coccidiose/tratamento farmacológico , Coccidiose/veterinária , Suplementos Nutricionais , Doenças das Aves Domésticas/tratamento farmacológico
8.
Parasitol Res ; 119(12): 4219-4223, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32725319

RESUMO

Essential oils and their components represent an appealing alternative strategy against parasitic mites. The chemical complexity and variability of essential oils limit their use and additional work is required to analyze the efficacy and application rate of essential oils' individual components. In the present study, the activity of five terpenes (terpinen-4-ol, citral, linalool, eugenol, and geraniol) was evaluated against Psoroptes cuniculi motile stages and eggs collected from naturally infected rabbits. Eugenol presented the best acaricidal efficacy with a median lethal concentration (LC50) value of less than 0.1% at 24 h, followed by geraniol (0.33%), linalool (0.38%), citral (0.46%), and terpinen-4-ol (0.66%). Geraniol and eugenol were able to kill all mites within 5 min at 1% concentration. The effective concentration to inhibit 50% (EC50) of egg hatching was 0.65%, 0.66%, 0.85%, 1.47%, and 2.87% for eugenol, geraniol, citral, terpinen-4-ol, and linalool, respectively. In conclusion, eugenol, geraniol, citral, terpinen-4-ol, and linalool should be considered as promising agents for the development of botanical acaricides against Psoroptes cuniculi.


Assuntos
Acaricidas/farmacologia , Óleos Voláteis/farmacologia , Psoroptidae/efeitos dos fármacos , Terpenos/farmacologia , Animais , Dose Letal Mediana , Infestações por Ácaros/tratamento farmacológico , Infestações por Ácaros/parasitologia , Óvulo/efeitos dos fármacos , Testes de Sensibilidade Parasitária , Coelhos
9.
Antimicrob Agents Chemother ; 59(11): 7113-6, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26324271

RESUMO

A novel nonconjugative plasmid of 28,489 bp from a porcine linezolid-resistant Enterococcus faecium isolate was completely sequenced. This plasmid harbored a novel type of multiresistance gene cluster that comprised the resistance genes lnu(B), lsa(E), spw, aadE, aphA3, and two copies of erm(B), which account for resistance to macrolides, lincosamides, streptogramins, pleuromutilins, streptomycin, spectinomycin, and kanamycin/neomycin. Structural comparisons suggested that this plasmid might have developed from other enterococcal plasmids by insertion element (IS)-mediated interplasmid recombination processes.


Assuntos
Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/genética , Animais , Antibacterianos/farmacologia , Diterpenos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Lincosamidas/farmacologia , Linezolida/farmacologia , Macrolídeos/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Compostos Policíclicos , Estreptograminas/farmacologia , Suínos , Pleuromutilinas
10.
Phytomedicine ; 128: 155258, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522318

RESUMO

BACKGROUND: Traditional Chinese Medicine (TCM), renowned for its holistic approach with a 2000-year history of utilizing natural remedies, offers unique advantages in disease prevention and treatment. Berberine, found in various Chinese herbs, has been employed for many years, primarily for addressing conditions such as diarrhea and dysentery. Berberine has recently become a research focus owing to its pharmacological activities and benefits to human bodies. However, little is known about the anti-inflammatory mechanism of berberine. PURPOSE: To summarize recent findings regarding the pharmacological effects and mechanisms of berberine anti-inflammation and highlight and predict the potential therapeutic effects and systematic mechanism of berberine. METHODS: Recent studies (2013-2023) on the pharmacological effects and mechanisms of berberine anti-inflammation were retrieved from Web of Science, PubMed, Google Scholar, and Scopus up to July 2023 using relevant keywords. Network pharmacology and bioinformatics analysis were employed to predict the therapeutic effects and mechanisms of berberine against potential diseases. RESULTS: The related pharmacological mechanisms of berberine anti-inflammation include the inhibition of inflammatory cytokine production (e.g., IL-1ß, IL-6, TNF-α), thereby attenuating the inflammatory response; Inhibiting the activation of NF-κB signaling pathway and IκBα degradation; Inhibiting the activation of MAPK signaling pathway; Enhancing the activation of the STAT1 signaling pathway; Berberine interacts directly with cell membranes through a variety of pathways, thereby influencing cellular physiological activities. Berberine enhances human immunity and modulates immune system function, which is integral to addressing certain autoimmune and tumour-related health concerns. CONCLUSION: This study expounds on the correlation between berberine and inflammatory diseases, encapsulating the mechanisms through which berberine treats select typical inflammatory ailments. Furthermore, it delves into a deeper understanding of berberine's effectiveness by integrating network pharmacology and molecular docking techniques in the context of treating inflammatory diseases. It provides guidance and reference for berberine's subsequent revelation of the modern scientific connotation of Chinese medicine.


Assuntos
Anti-Inflamatórios , Berberina , Inflamação , Farmacologia em Rede , Animais , Humanos , Anti-Inflamatórios/farmacologia , Berberina/farmacologia , Berberina/química , Citocinas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Inflamação/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Microbiol Spectr ; : e0399023, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904372

RESUMO

Infectious bronchitis virus (IBV) is caused by avian coronavirus and poses a global economic threat to the poultry industry. In 2023, a highly pathogenic IBV strain, IBV/CN/GD20230501, was isolated and identified from chickens vaccinated with IBV-M41 in Guangdong, China. This study comprehensively investigated the biological characteristics of the isolated IBV strain, including its genotype, whole genome sequence analysis of its S1 gene, pathogenicity, host immune response, and serum non-targeted metabolomics. Through the analysis of the S1 gene sequence, serum neutralization tests, and comparative genomics, it was proven that IBV/CN/GD20230501 belongs to the GI-I type of strain and is serotype II. One alanine residue in the S1 subunit of the isolated strain was mutated into serine, and some mutations were observed in the ORF1ab gene and the terminal region of the genome. Animal challenge experiments using the EID50 and TCID50 calculations showed that IBV/CN/GD20230501 possesses strong respiratory pathogenicity, with early and long-term shedding of viruses and rapid viral spread. Antibody detection indicated that chickens infected with IBV/CN/GD20230501 exhibited delayed expression of early innate immune genes, while those infected with M41 showed rapid gene induction and effective viral control. Metabolomics analysis demonstrated that this virus infection led to differential expression of 291 ions in chicken serum, mainly affecting the citric acid cycle (tricarboxylic acid cycle).IMPORTANCEThis study identified an infectious bronchitis virus (IBV) strain isolated from vaccinated chickens in an immunized population that had certain sequence differences compared to IBV-M41, resulting in significantly enhanced pathogenicity and host defense. This strain has the potential to replace M41 as a more suitable challenge model for drug research. The non-targeted metabolomics analysis highlighting the citric acid cycle provides a new avenue for studying this highly virulent strain.

12.
Poult Sci ; 103(7): 103824, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772089

RESUMO

Coccidiosis, which is caused by Eimeria species, results in huge economic losses to the poultry industry. Arbor Acres (AA) broilers and yellow-feathered broilers are the dominant broilers in northern and southern China, respectively. However, their susceptibility to coccidiosis has not been fully compared. In this study, the susceptibility of yellow-feathered broilers, AA broilers and Lohmann pink layers to E. tenella was evaluated based on mortality rate, relative body weight gain rate, intestinal lesion score, oocyst output, anticoccidial index (ACI), and cecum weight and length. The yellow-feathered broilers were shown to produce significantly fewer oocysts with higher intestinal lesion score compared to AA broilers, which had the highest growth rates and ACI scores. Subsequently, changes in the cecal microbiota of the 3 chicken lines before and after high-dose infection (1 × 104 oocysts) with E. tenella were determined by 16S rRNA sequencing. The results showed that composition of the microbiota changed dramatically after infection. The abundance of Firmicutes and Bacteroidetes in the infected chickens decreased, and Proteobacteria increased significantly among the different chicken lines. At the genus level, Escherichia increased significantly in all 3 groups of infected chickens, but Lactobacillus decreased to 0% in the infected yellow-feathered broilers. The results of the study indicate that the susceptibility to E. tenella varies among the 3 chicken lines, and that changes in intestinal microbiota by E. tenella-infection among the different chicken lines had a similar trend, but to different degrees. This study provides basic knowledge of the susceptibility in the 3 chicken lines, which can be helpful for the control and prevention of coccidiosis.


Assuntos
Ceco , Galinhas , Coccidiose , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Animais , Coccidiose/veterinária , Coccidiose/parasitologia , Doenças das Aves Domésticas/parasitologia , Doenças das Aves Domésticas/microbiologia , Ceco/microbiologia , Ceco/parasitologia , Suscetibilidade a Doenças/veterinária , Eimeria tenella/fisiologia , Feminino , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , China , Eimeria/fisiologia
13.
Microorganisms ; 12(3)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38543652

RESUMO

Chicken coccidiosis costs the poultry industry over GBP 10 billion per year. The main method of preventing and controlling coccidiosis in chickens continues to be the use of drugs. Unfortunately, the prevalence of drug resistance in the field reduces or even eliminates the effectiveness of drugs, and drug residues in the food supply chain can also can be harmful to humans. Therefore, safe and effective anticoccidial drugs are urgently needed. Natural products have many advantages such as being safe, effective and inexpensive and are a sustainable way to control coccidiosis. In this study, the anticoccidial effects of six natural compounds were tested by Eimeria tenella infection. Oocyst production, cecum lesion, body weight gain, feed conversion ratio, and intestinal microbiota were measured. The results showed that nerolidol had a moderate effect on maintaining both body weight gain and feed conversion ratio. Silymarin and dihydroartemisinin showed significant anticoccidial effects by reducing total oocyst output. Dihydroartemisinin also significantly reduced the cecum lesion caused by Eimeria infection, but this compound may be toxic to the host at such informed doses because it decreases growth and survival rates. In addition, both silymarin and dihydroartemisinin partly restored the microbiota after challenge. This indicates that silymarin, dihydroartemisinin, and nerolidol are effective in the control of chicken coccidiosis. Our data provide basic knowledge about the anticoccidial effects of such natural compounds/derivates.

14.
Poult Sci ; 103(8): 103881, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38865766

RESUMO

Infectious bronchitis virus (IBV) is one of the most widely spread RNA viruses, causing respiratory, renal, and intestinal damage, as well as decreased reproductive performance in hens, leading to significant economic losses in the poultry industry. In this study, a new IBV strain designated as CK/CH/GX/LA/071423 was successfully isolated from the 60-day-old Three-Yellow chicken vaccinated with H120 and QXL87 vaccines. The complete genome sequence analysis revealed that the CK/CH/GX/LA/071423 strain shared a high similarity of 96.7% with the YX10 strain belonging to the GI-19 genotype. Genetic evolution analysis based on the IBV S1 gene showed that the CK/CH/GX/LA/071423 isolate belonged to the GI-19 genotype. Recombination analysis of the virus genome using RDP and Simplot software indicated that CK/CH/GX/LA/071423 was derived from recombination events between the YX10 and 4/91 vaccine strains, which was supported by phylogenetic analysis using gene sequences from the 3 regions. Furthermore, the S1 protein tertiary structure differences were observed between the CK/CH/GX/LA/071423 and the QXL87 and H120 vaccine strains. Pathogenicity studies revealed that the CK/CH/GX/LA/071423 caused death and led to pale and enlarged kidneys with abundant urate deposits, indicative of a nephropathogenic IBV strain. High virus titers were detected in the trachea, kidneys, and cecal tonsils, demonstrating broad tissue tropism. Throughout the experimental period, the virus positive rate in throat swabs of the infected group reached to 100%. These findings highlight the continued predominance of the QX genotype IBV in Guangxi of China and the ongoing evolution of different genotypes through genetic recombination, raising concerns about the efficacy of current IBV vaccines in providing effective protection to poultry.

15.
Front Microbiol ; 15: 1382639, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577686

RESUMO

Polysaccharides are generally considered to have immune enhancing functions, and mulberry leaf polysaccharide is the main active substance in mulberry leaves, while there are few studies on whether mulberry leaf polysaccharide (MLP) has an effect on immunosuppression and intestinal damage caused by cyclophosphamide (CTX), we investigated whether MLP has an ameliorative effect on intestinal damage caused by CTX. A total of 210 1-day-old Mahuang cocks were selected for this experiment. Were equally divided into six groups and used to evaluate the immune effect of MLP. Our results showed that MLP significantly enhanced the growth performance of chicks and significantly elevated the secretion of cytokines (IL-1ß, IL-10, IL-6, TNF-α, and IFN-γ), immunoglobulins and antioxidant enzymes in the serum of immunosuppressed chicks. It attenuated jejunal damage and elevated the expression of jejunal tight junction proteins Claudin1, Zo-1 and MUC2, which protected intestinal health. MLP activated TLR4-MyD88-NF-κB pathway and enhanced the expression of TLR4, MyD88 and NF-κB, which served to protect the intestine. 16S rDNA gene high-throughput sequencing showed that MLP increased species richness, restored CTX-induced gut microbiome imbalance, and enhanced the abundance of probiotic bacteria in the gut. MLP improves cyclophosphamide-induced growth inhibition and intestinal damage in chicks by modulating intestinal flora and enhancing immune regulation and antioxidant capacity. In conclusion, this study provides a scientific basis for MLP as an immune enhancer to regulate chick intestinal flora and protect chick intestinal mucosal damage.

16.
Int J Biol Macromol ; 261(Pt 1): 129590, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266859

RESUMO

As a Chinese folk health product, Abrus cantoniensis exhibits good immunomodulatory activity because of its polysaccharide components (ACP), and carboxymethylation of polysaccharides can often further improve the biological activity of polysaccharides. In this study, we explored the impact of prophylactic administration of carboxymethylated Abrus cantoniensis polysaccharide (CM-ACP) on immunosuppression and intestinal damage induced by cyclophosphamide (CTX) in mice. Our findings demonstrated that CM-ACP exhibited a more potent immunomodulatory activity compared to ACP. Additionally, CM-ACP effectively enhanced the abundance of short-chain fatty acid (SCFA)-producing bacteria in immunosuppressed mice and regulated the gene expression of STAT6 and STAT3 mediated pathway signals. In order to further explore the relationship among polysaccharides, intestinal immunity and intestinal flora, we performed a pseudo-sterile mouse validation experiment and fecal microbiota transplantation (FMT) experiment. The findings suggest that CM-FMT and butyrate attenuate CTX-induced immunosuppression and intestinal injury. CM-FMT and butyrate show superior immunomodulatory ability, and may effectively regulate intestinal cell metabolism and repair the damaged intestine by activating STAT6 and STAT3-mediated pathways. These findings offer new insights into the mechanisms by which CM-ACP functions as functional food or drug, facilitating immune response regulation and maintaining intestinal health.


Assuntos
Abrus , Microbioma Gastrointestinal , Camundongos , Animais , Ácido Butírico , Terapia de Imunossupressão , Intestinos , Polissacarídeos/farmacologia
17.
Life Sci ; 334: 122229, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37922980

RESUMO

Low-grade chronic inflammation, also known as metabolic inflammation, promotes the development of metabolic diseases. Increasing evidence suggests that changes in gut microbes and metabolites disrupt the integrity of the gut barrier and exert significant effects on the metabolism of various tissues, including the liver and adipose tissue, thereby contributing to metabolic inflammation. We observed that IL-22 is a key signaling molecule that serves as a bridge between intestinal microbes and the host, effectively alleviating metabolic inflammation by modulating the host immunomodulatory network. Here, we focused on elucidating the underlying mechanisms by which the gut microbiota and their metabolites reduce inflammation via IL-22, highlighting the favorable impact of IL-22 on metabolic inflammation. Furthermore, we discuss the potential of IL-22 as a therapeutic target for the management of metabolic inflammation and related diseases.


Assuntos
Microbioma Gastrointestinal , Humanos , Inflamação/metabolismo , Interleucinas/metabolismo , Fígado/metabolismo , Interleucina 22
18.
Animals (Basel) ; 13(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36830364

RESUMO

Clostridium perfringens (C. perfringens) is a common pathogenic bacterium implicated in the enteric diseases of animals. Each year, the disease is responsible for billions of dollars of losses worldwide. The development of new phytomedicines as alternatives to antibiotics is becoming a new hotspot for treating such diseases. Citric acid (CA) and magnolol (MA) have been shown to have antibacterial, antioxidant, and growth-promoting properties. Here, the bacteriostatic effects of combinations of CA and MA against C. perfringens were investigated, together with their effects on yellow-hair chickens challenged with C. perfringens. It was found that the optimal CA:MA ratio was 50:3, with a dose of 265 µg/mL significantly inhibiting C. perfringens growth, and 530 µg/mL causing significant damage to the bacterial cell morphology. In animal experiments, C. perfringens challenge reduced the growth, damaged the intestinal structure, activated inflammatory signaling, impaired antioxidant capacity, and perturbed the intestinal flora. These effects were alleviated by combined CA-MA treatment. The CA-MA combination was found to inhibit the TLR/Myd88/NF-κB and Nrf-2/HO-1 signaling pathways. In conclusion, the results suggest the potential of combined CA-MA treatment in alleviating C. perfringens challenge by inhibiting the growth of C. perfringens and affecting the TLR/MyD88/NF-κB and Nrf-2/HO-1 signaling pathways.

19.
Animals (Basel) ; 13(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36830384

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) type 1 (European genotype) and PRRSV type 2 (North American genotype) are prevalent all over the world. Nowadays, the North American genotype PRRSV (NA-PRRSV) has been widely circulating in China and has caused huge economic losses to the pig industry. In recent years, classical PRRSV (C-PRRSV), highly pathogenic PRRSV (HP-PRRSV), and NADC30-like PRRSV (NL-PRRSV) have been the most common circulating strains in China. In order to accurately differentiate the circulating strains of NA-PRRSV, three pairs of specific primers and corresponding probes were designed for the Nsp2 region of C-PRRSV, HP-PRRSV, and NL-PRRSV. After optimizing the annealing temperature, primer concentration, and probe concentration, a multiplex real-time quantitative RT-PCR (qRT-PCR) and a multiplex Crystal digital RT-PCR (cdRT-PCR) for the differential detection of C-PRRSV, HP-PRRSV, and NL-PRRSV were developed. The results showed that the two assays illustrated high sensitivity, with a limit of detection (LOD) of 3.20 × 100 copies/µL for the multiplex qRT-PCR and 3.20 × 10-1 copies/µL for the multiplex cdRT-PCR. Both assays specifically detected the targeted viruses, without cross-reaction with other swine viruses, and indicated excellent repeatability, with coefficients of variation (CVs) of less than 1.26% for the multiplex qRT-PCR and 2.68% for the multiplex cdRT-PCR. Then, a total of 320 clinical samples were used to evaluate the application of these assays, and the positive rates of C-PRRSV, HP-PRRSV, and NL-PRRSV by the multiplex qRT-PCR were 1.88%, 21.56%, and 9.69%, respectively, while the positive rates by the multiplex cdRT-PCR were 2.19%, 25.31%, and 11.56%, respectively. The high sensitivity, strong specificity, excellent repeatability, and reliability of these assays indicate that they could provide useful tools for the simultaneous and differential detection of the circulating strains of C-PRRSV, HP-PRRSV, and NL-PRRSV in the field.

20.
Vet Sci ; 10(5)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37235413

RESUMO

Atypical porcine pestivirus (APPV), a newly discovered virus, is associated with the type A-II congenital tremor (CT) in neonatal piglets. APPV distributes throughout the world and causes certain economic losses to the swine industry. The specific primers and probe were designed targeting the 5' untranslated region (UTR) of APPV to amplify a 90 bp fragment, and the recombinant standard plasmid was constructed. After optimizing the concentrations of primers and probe, annealing temperature, and reaction cycles, a crystal digital RT-PCR (cdRT-PCR) and real-time quantitative RT-PCR (qRT-PCR) were successfully established. The results showed that the standard curves of the qRT-PCR and the cdRT-PCR had R2 values of 0.999 and 0.9998, respectively. Both methods could specifically detect APPV, and no amplification signal was obtained from other swine viruses. The limit of detection (LOD) of the cdRT-PCR was 0.1 copies/µL, and that of the qRT-PCR was 10 copies/µL. The intra-assay and inter-assay coefficients of variation of repeatability and reproducibility were less than 0.90% for the qRT-PCR and less than 5.27% for the cdRT-PCR. The 60 clinical tissue samples were analyzed using both methods, and the positivity rates of APPV were 23.33% by the qRT-PCR and 25% by the cdRT-PCR, with a coincidence rate of 98.33%. The results indicated that the cdRT-PCR and the qRT-PCR developed here are highly specific, sensitive methods for the rapid and accurate detection of APPV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA