Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17948, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864007

RESUMO

Deciphering the non-trivial interactions and mechanisms driving the evolution of time-varying complex networks (TVCNs) plays a crucial role in designing optimal control strategies for such networks or enhancing their causal predictive capabilities. In this paper, we advance the science of TVCNs by providing a mathematical framework through which we can gauge how local changes within a complex weighted network affect its global properties. More precisely, we focus on unraveling unknown geometric properties of a network and determine its implications on detecting phase transitions within the dynamics of a TVCN. In this vein, we aim at elaborating a novel and unified approach that can be used to depict the relationship between local interactions in a complex network and its global kinetics. We propose a geometric-inspired framework to characterize the network's state and detect a phase transition between different states, to infer the TVCN's dynamics. A phase of a TVCN is determined by its Forman-Ricci curvature property. Numerical experiments show the usefulness of the proposed curvature formalism to detect the transition between phases within artificially generated networks. Furthermore, we demonstrate the effectiveness of the proposed framework in identifying the phase transition phenomena governing the training and learning processes of artificial neural networks. Moreover, we exploit this approach to investigate the phase transition phenomena in cellular re-programming by interpreting the dynamics of Hi-C matrices as TVCNs and observing singularity trends in the curvature network entropy. Finally, we demonstrate that this curvature formalism can detect a political change. Specifically, our framework can be applied to the US Senate data to detect a political change in the United States of America after the 1994 election, as discussed by political scientists.

2.
Sci Rep ; 12(1): 10883, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760826

RESUMO

Cellular biological networks represent the molecular interactions that shape function of living cells. Uncovering the organization of a biological network requires efficient and accurate algorithms to determine the components, termed communities, underlying specific processes. Detecting functional communities is challenging because reconstructed biological networks are always incomplete due to technical bias and biological complexity, and the evaluation of putative communities is further complicated by a lack of known ground truth. To address these challenges, we developed a geometric-based detection framework based on Ollivier-Ricci curvature to exploit information about network topology to perform community detection from partially observed biological networks. We further improved this approach by integrating knowledge of gene function, termed side information, into the Ollivier-Ricci curvature algorithm to aid in community detection. This approach identified essential conserved and varied biological communities from partially observed Arabidopsis protein interaction datasets better than the previously used methods. We show that Ollivier-Ricci curvature with side information identified an expanded auxin community to include an important protein stability complex, the Cop9 signalosome, consistent with previous reported links to auxin response and root development. The results show that community detection based on Ollivier-Ricci curvature with side information can uncover novel components and novel communities in biological networks, providing novel insight into the organization and function of complex networks.


Assuntos
Algoritmos , Ácidos Indolacéticos
3.
Sci Rep ; 9(1): 9800, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31278341

RESUMO

Identification of community structures in complex network is of crucial importance for understanding the system's function, organization, robustness and security. Here, we present a novel Ollivier-Ricci curvature (ORC) inspired approach to community identification in complex networks. We demonstrate that the intrinsic geometric underpinning of the ORC offers a natural approach to discover inherent community structures within a network based on interaction among entities. We develop an ORC-based community identification algorithm based on the idea of sequential removal of negatively curved edges symptomatic of high interactions (e.g., traffic, attraction). To illustrate and compare the performance with other community identification methods, we examine the ORC-based algorithm with stochastic block model artificial networks and real-world examples ranging from social to drug-drug interaction networks. The ORC-based algorithm is able to identify communities with either better or comparable performance accuracy and to discover finer hierarchical structures of the network. This opens new geometric avenues for analysis of complex networks dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA