Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Structure ; 7(8): 989-96, 1999 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10467148

RESUMO

BACKGROUND: Among the S1 family of serine proteinases, the blood coagulation factor IXa (fIXa) is uniquely inefficient against synthetic peptide substrates. Mutagenesis studies show that a loop of residues at the S2-S4 substrate-binding cleft (the 99-loop) contributes to the low efficiency. The crystal structure of porcine fIXa in complex with the inhibitor D-Phe-Pro-Arg-chloromethylketone (PPACK) was unable to directly clarify the role of the 99-loop, as the doubly covalent inhibitor induced an active conformation of fIXa. RESULTS: The crystal structure of a recombinant two-domain construct of human fIXa in complex with p-aminobenzamidine shows that the Tyr99 sidechain adopts an atypical conformation in the absence of substrate interactions. In this conformation, the hydroxyl group occupies the volume corresponding to the mainchain of a canonically bound substrate P2 residue. To accommodate substrate binding, Tyr99 must adopt a higher energy conformation that creates the S2 pocket and restricts the S4 pocket, as in fIXa-PPACK. The energy cost may contribute significantly to the poor K(M) values of fIXa for chromogenic substrates. In homologs, such as factor Xa and tissue plasminogen activator, the different conformation of the 99-loop leaves Tyr99 in low-energy conformations in both bound and unbound states. CONCLUSIONS: Molecular recognition of substrates by fIXa seems to be determined by the action of the 99-loop on Tyr99. This is in contrast to other coagulation enzymes where, in general, the chemical nature of residue 99 determines molecular recognition in S2 and S3-S4. This dominant role on substrate interaction suggests that the 99-loop may be rearranged in the physiological fX activation complex of fIXa, fVIIIa, and fX.


Assuntos
Fator IXa/química , Tirosina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cálcio/metabolismo , Catálise , Cristalografia por Raios X , Fator IXa/metabolismo , Humanos , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
2.
Mol Gen Genet ; 263(6): 1053-60, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10954092

RESUMO

During a search for new differentiation factors in Streptomyces coelicolor A3(2), a locus at 11 o'clock on the S. coelicolor map was identified which harbours several genes that show extensive similarity to cell division and differentiation genes from Escherichia coli and Bacillus subtilis. From the sequence data it was concluded that the region contains the genes mireB, mreC, mreD (murein formation gene cluster E), pbp83 (high-molecular-weight penicillin-binding protein) and sfr (member of the spoVE/ftsW/rodA family). Mre gene products are reported to be responsible for determining cell shape in E. coli and Bacillus. The S. coelicolor mreC gene was inactivated by gene disruption, resulting in mutants which showed significant growth retardation in comparison to the wild type. Inactivation of the mreB gene was incompatible with viability, and thus mreB represents a Streptomyces cell division gene that is essential for survival. Promoter-probe experiments led to the identification of an operon structure, with promoters located upstream of mreB, pbp83 and sfr. Detailed studies of mreB transcription revealed the existence of three promoters; two of them are constitutively transcribed, whereas the third is developmentally regulated.


Assuntos
Proteínas de Escherichia coli , Genes Bacterianos , Peptidoglicano/biossíntese , Streptomyces/citologia , Streptomyces/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Diferenciação Celular , Divisão Celular/genética , Mapeamento Cromossômico , Clonagem Molecular , Sondas de DNA , Resistência a Canamicina , Dados de Sequência Molecular , Família Multigênica , Mutagênese , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Esporos Bacterianos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA