Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 205: 116567, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38875968

RESUMO

Globally plastic pollution is posing a significant threat to the health and integrity of coastal ecosystems. This study aimed to provide a comprehensive overview of plastic pollution in the coastal areas of Bangladesh by examining land-based macroplastic distribution, exploring microplastic (MP) contamination in the coastal aquatic ecosystem and enhancing our understanding of the potential risks associated with MP contamination. Citizen science based monitoring approach using the android application was applied to understand the land-based plastic pollution in the coastal area of Bangladesh. From December 2022 to December 2023, a total of about 3600 photographs of plastic items from 215 citizen scientists were received from the coastal area of Bangladesh covering 580 km long coast line. Polymer Hazard Index (PHI) and Pollution Load Index (PLI) were also calculated to understand the risk of plastic pollution in sediment, water, aquatic organism, dried fish and sea salt. A total of 43 land-based plastic items reported from the coastal area of Bangladesh. Among these plastic items single use items contributed 58.2 % while disposable plastic items contributed 41.8 %. A strong spatial variability in the distribution of these plastic items was observed. PHI and PLI values suggested hazard category-I for MP contamination in sediment, sea salt, water, commercial fishery resources and dry fish. This study highlighted that coastal land area, sea salt, dried fish, water, sediment and organisms are contaminated with plastics which might have the potential threats to human health. Findings from this study will serve as reference data and also baseline for future research to combat the plastic pollution.


Assuntos
Monitoramento Ambiental , Plásticos , Poluentes Químicos da Água , Bangladesh , Plásticos/análise , Poluentes Químicos da Água/análise , Microplásticos/análise , Ecossistema , Animais
2.
Heliyon ; 9(6): e17368, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37441399

RESUMO

The central coast of Bangladesh is dynamic for its geographical location, hydrodynamic characteristics and residual flow. The research employed the Digital Shoreline Analysis System (DSAS), an ArcGIS extension tool, to conduct a historical trend analysis of shoreline. The study demonstrates that the central coast is eroding to the north and accreting to the south. The highest accretion value was found as 195.42 m/year, whereas the maximum value of erosion was estimated as -185.83 m/year, according to End Point Rate (EPR). The Linear Regression Rate (LRR) indicates that the average rate of erosion and accretion are -17.77 m/year and 17.88 m/year, respectively. Meanwhile, using Weighted Linear Regression (WLR), 0.48% of all transects demonstrated statistically significant erosion, while 0.43% showed statistically significant accretion. During the wet season, heavy river discharge leads to a low salt level in the ocean. Ocean currents hit central coast of Bangladesh from east to west, affecting the majority of the islands in the Meghna Estuary in the dry season. Changes in current directions can be seen during the wet seasons. Southern central coast areas are hit by south-east currents that split in two directions. The Sandwip Channel has a flow of 10,000 to 15,000 m³ s-1 northward. The Tetulia River, Shahbazpur Channel, and Hatia-Sandwip flow southward at rates ranging from 3000 to 17,000 m³ s-1, 14,000 to 60,000 m³ s-1, and 7000 to 39,000 m³ s-1, respectively. In the Meghna Estuary, the combined forces result in a counter-clockwise residual circulation, with the northward flow in the Sandwip channel and southbound flow in the Hatia and Shahbazpur channels. As a result of hydrodynamic, ocean currents, and residual flow, the Central Coast of Bangladesh is continually changing in appearance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA