Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791334

RESUMO

Human evolution is characterized by rapid brain enlargement and the emergence of unique cognitive abilities. Besides its distinctive cytoarchitectural organization and extensive inter-neuronal connectivity, the human brain is also defined by high rates of synaptic, mainly glutamatergic, transmission, and energy utilization. While these adaptations' origins remain elusive, evolutionary changes occurred in synaptic glutamate metabolism in the common ancestor of humans and apes via the emergence of GLUD2, a gene encoding the human glutamate dehydrogenase 2 (hGDH2) isoenzyme. Driven by positive selection, hGDH2 became adapted to function upon intense excitatory firing, a process central to the long-term strengthening of synaptic connections. It also gained expression in brain astrocytes and cortical pyramidal neurons, including the CA1-CA3 hippocampal cells, neurons crucial to cognition. In mice transgenic for GLUD2, theta-burst-evoked long-term potentiation (LTP) is markedly enhanced in hippocampal CA3-CA1 synapses, with patch-clamp recordings from CA1 pyramidal neurons revealing increased sNMDA receptor currents. D-lactate blocked LTP enhancement, implying that glutamate metabolism via hGDH2 potentiates L-lactate-dependent glia-neuron interaction, a process essential to memory consolidation. The transgenic (Tg) mice exhibited increased dendritic spine density/synaptogenesis in the hippocampus and improved complex cognitive functions. Hence, enhancement of neuron-glia communication, via GLUD2 evolution, likely contributed to human cognitive advancement by potentiating synaptic plasticity and inter-neuronal connectivity.


Assuntos
Cognição , Glutamato Desidrogenase , Ácido Glutâmico , Plasticidade Neuronal , Animais , Humanos , Ácido Glutâmico/metabolismo , Cognição/fisiologia , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/genética , Camundongos , Ácido Láctico/metabolismo , Potenciação de Longa Duração , Camundongos Transgênicos , Células Piramidais/metabolismo , Hipocampo/metabolismo , Evolução Molecular , Sinapses/metabolismo
2.
Cereb Cortex ; 32(17): 3633-3650, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-34905772

RESUMO

The prefrontal cortex (PFC) is characterized by protracted maturation. The cellular mechanisms controlling the early development of prefrontal circuits are still largely unknown. Our study delineates the developmental cellular processes in the mouse medial PFC (mPFC) during the second and the third postnatal weeks and characterizes their contribution to the changes in network activity. We show that spontaneous inhibitory postsynaptic currents (sIPSC) are increased, whereas spontaneous excitatory postsynaptic currents (sEPSC) are reduced from the second to the third postnatal week. Drug application suggested that the increased sEPSC frequency in mPFC at postnatal day 10 (P10) is due to depolarizing γ-aminobutyric acid (GABA) type A receptor function. To further validate this, perforated patch-clamp recordings were obtained and the expression levels of K-Cl cotransporter 2 (KCC2) protein were examined. The reversal potential of IPSCs in response to current stimulation was significantly more depolarized at P10 than P20 while KCC2 expression is decreased. Moreover, the number of parvalbumin-expressing GABAergic interneurons increases and their intrinsic electrophysiological properties significantly mature in the mPFC from P10 to P20. Using computational modeling, we show that the developmental changes in synaptic and intrinsic properties of mPFC neurons contribute to the enhanced network activity in the juvenile compared with neonatal mPFC.


Assuntos
Simportadores , Ácido gama-Aminobutírico , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Simportadores/metabolismo , Ácido gama-Aminobutírico/metabolismo
3.
Eur J Neurosci ; 55(9-10): 2754-2765, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-33759255

RESUMO

Stress, a major regulator and precipitating factor of cognitive and emotional disorders, differentially manifests between males and females. Our aim was to investigate the mechanisms underlying the sexual dimorphic effects of acute restraint stress (RS) on males and females on the function of the prefrontal cortex (PFC). Adult male and female mice were subjected to RS or left in their home-cage (NR), and then tested in the light-dark test followed by the temporal order object recognition (TOR) task. Female mice exhibited increased anxiety-like levels, whereas male mice only showed deficits in the TOR task. When the behavioural tests were conducted 24 hr following restraint stress (RS24), only the reduced performance in the TOR task in male mice persisted. In a different cohort, evoked field excitatory postsynaptic potentials (fEPSPs) were recorded in layer II of acute PFC slices, immediately or 24 hr after RS. Long-term potentiation (LTP) was significantly reduced in RS and RS24 male, but not female, compared with their respective NR group. LTP in PFC slices incubated with corticosterone showed significantly reduced LTP only in males. To determine whether glucocorticoid signalling is implicated in the RS-induced behavioural effects, a different cohort of mice was administered mifepristone, a corticosterone receptor antagonist. Mifepristone administration 1 hr before RS prevented the effects of RS on the TOR task in males, but not anxiety. In conclusion, RS has differential effects on recency memory and anxiety, in males and females, which are partly mediated by the effects of corticosterone signalling on synaptic plasticity.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Animais , Corticosterona/farmacologia , Feminino , Humanos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Mifepristona/farmacologia , Córtex Pré-Frontal/metabolismo , Receptores de Glucocorticoides/metabolismo , Caracteres Sexuais , Estresse Psicológico
4.
J Neurosci Res ; 99(7): 1802-1814, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33740288

RESUMO

Working memory (WM) is the ability to hold on-line and manipulate information. The prefrontal cortex (PFC) is a key brain region involved in WM, while the hippocampus is also involved, particularly, in spatial WM. Although several studies have investigated the neuronal substrates of WM in trained animals, the effects and the mechanisms underlying learning WM tasks have not been explored. In our study, we investigated the effects of learning WM tasks in mice on the function of PFC and hippocampus, by training mice in the delayed alternation task for 9 days (adaptive group). This group was compared to naïve mice (which stayed in their homecage) and mice trained in the alternation procedure only (non-adaptive). Following training, a cohort of mice (Experiment A) was tested in the left-right discrimination task and the reversal learning task, while another cohort (Experiment B) was tested in the attention set-shifting task (AST). The adaptive group performed significantly better in the reversal learning task (Experiment A) and AST (Experiment B), compared to non-adaptive and naïve groups. At the end of the behavioral experiments in Experiment A, field excitatory post-synaptic potential (fEPSP) recordings were performed in PFC and hippocampal brain slices. The adaptive group had enhanced the long-term potentiation (LTP) in the PFC, compared to the other groups. In the hippocampus, both the adaptive and the non-adaptive groups exhibited increased fEPSP compared to the naïve group, but no differences in LTP. In Experiment B, the dendritic spine density was measured, which, in the PFC, was found increased in the adaptive group, compared to the non-adaptive and naïve groups. In the hippocampus, there was an increase in mature dendritic spine density in the adaptive group, compared to the other two groups. Our results indicate a role for LTP and dendritic spine density in learning WM tasks.


Assuntos
Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Espinhas Dendríticas/fisiologia , Potenciais Pós-Sinápticos Excitadores , Masculino , Camundongos
5.
Neurochem Res ; 44(1): 154-169, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29777493

RESUMO

Human evolution is characterized by brain expansion and up-regulation of genes involved in energy metabolism and synaptic transmission, including the glutamate signaling pathway. Glutamate is the excitatory transmitter of neural circuits sub-serving cognitive functions, with glutamate-modulation of synaptic plasticity being central to learning and memory. GLUD2 is a novel positively-selected human gene involved in glutamatergic transmission and energy metabolism that underwent rapid evolutionary adaptation concomitantly with prefrontal cortex enlargement. Two evolutionary replacements (Gly456Ala and Arg443Ser) made hGDH2 resistant to GTP inhibition and allowed distinct regulation, enabling enhanced enzyme function under high glutamatergic system demands. GLUD2 adaptation may have contributed to unique human traits, but evidence for this is lacking. GLUD2 arose through retro-positioning of a processed GLUD1 mRNA to the X chromosome, a DNA replication mechanism that typically generates pseudogenes. However, by finding a suitable promoter, GLUD2 is thought to have gained expression in nerve and other tissues, where it adapted to their particular needs. Here we generated GLUD2 transgenic (Tg) mice by inserting in their genome a segment of the human X chromosome, containing the GLUD2 gene and its putative promoter. Double IF studies of Tg mouse brain revealed that the human gene is expressed in the host mouse brain in a pattern similar to that observed in human brain, thus providing credence to the above hypothesis. This expressional adaptation may have conferred novel role(s) on GLUD2 in human brain. Previous observations, also in GLUD2 Tg mice, generated and studied independently, showed that the non-redundant function of hGDH2 is markedly activated during early post-natal brain development, contributing to developmental changes in prefrontal cortex similar to those attributed to human divergence. Hence, GLUD2 adaptation may have influenced the evolutionary course taken by the human brain, but understanding the mechanism(s) involved remains challenging.


Assuntos
Adaptação Fisiológica/fisiologia , Encéfalo/fisiologia , Evolução Molecular , Glutamato Desidrogenase/biossíntese , Heterozigoto , Animais , Expressão Gênica , Glutamato Desidrogenase/química , Glutamato Desidrogenase/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Estrutura Secundária de Proteína , Cromossomo X/genética
6.
Glia ; 66(3): 576-591, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29165835

RESUMO

The oligodendrocyte maturation process and the transition from the pre-myelinating to the myelinating state are extremely important during development and in pathology. In the present study, we have investigated the role of the cell adhesion molecule CNTN2/TAG-1 on oligodendrocyte proliferation, differentiation, myelination, and function during development and under pathological conditions. With the combination of in vivo, in vitro, ultrastructural, and electrophysiological methods, we have mapped the expression of CNTN2 protein in the oligodendrocyte lineage during the different stages of myelination and its involvement on oligodendrocyte maturation, branching, myelin-gene expression, myelination, and axonal function. The cuprizone model of central nervous system demyelination was further used to assess CNTN2 in pathology. During development, CNTN2 can transiently affect the expression levels of myelin and myelin-regulating genes, while its absence results in reduced oligodendrocyte branching, hypomyelination of fiber tracts and impaired axonal conduction. In pathology, CNTN2 absence does not affect the extent of de- and remyelination. However during remyelination, a novel, CNTN2-independent mechanism is revealed that is able to recluster voltage gated potassium channels (VGKCs) resulting in the improvement of fiber conduction.


Assuntos
Contactina 2/metabolismo , Doenças Desmielinizantes/metabolismo , Oligodendroglia/metabolismo , Animais , Axônios/fisiologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Canais de Cálcio/metabolismo , Células Cultivadas , Contactina 2/genética , Cuprizona , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Condução Nervosa/fisiologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Oligodendroglia/patologia , Técnicas de Cultura de Tecidos
7.
J Neurophysiol ; 119(3): 822-833, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167323

RESUMO

Adolescence is a highly vulnerable period for the emergence of major neuropsychological disorders and is characterized by decreased cognitive control and increased risk-taking behavior and novelty-seeking. The prefrontal cortex (PFC) is involved in the cognitive control of impulsive and risky behavior. Although the PFC is known to reach maturation later than other cortical areas, little information is available regarding the functional changes from adolescence to adulthood in PFC, particularly compared with other primary cortical areas. This study aims to understand the development of PFC-mediated, compared with non-PFC-mediated, cognitive functions. Toward this aim, we performed cognitive behavioral tasks in adolescent and adult mice and subsequently investigated synaptic plasticity in two different cortical areas. Our results showed that adolescent mice exhibit impaired performance in PFC-dependent cognitive tasks compared with adult mice, whereas their performance in non-PFC-dependent tasks is similar to that of adults. Furthermore, adolescent mice exhibited decreased long-term potentiation (LTP) within upper-layer synapses of the PFC but not the barrel cortex. Blocking GABAA receptor function significantly augments LTP in both the adolescent and adult PFC. No change in intrinsic excitability of PFC pyramidal neurons was observed between adolescent and adult mice. Finally, increased expression of the NR2A subunit of the N-methyl-d-aspartate receptors is found only in the adult PFC, a change that could underlie the emergence of LTP. In conclusion, our results demonstrate physiological and behavioral changes during adolescence that are specific to the PFC and could underlie the reduced cognitive control in adolescents. NEW & NOTEWORTHY This study reports that adolescent mice exhibit impaired performance in cognitive functions dependent on the prefrontal cortex but not in cognitive functions dependent on other cortical regions. The current results propose reduced synaptic plasticity in the upper layers of the prefrontal cortex as a cellular correlate of this weakened cognitive function. This decreased synaptic plasticity is due to reduced N-methyl-d-aspartate receptor expression but not due to dampened intrinsic excitability or enhanced GABAergic signaling during adolescence.


Assuntos
Cognição/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Comportamento Animal , Masculino , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reconhecimento Psicológico/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento
8.
Brain ; 140(3): 599-616, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28100454

RESUMO

Pelizaeus-Merzbacher-like disease or hypomyelinating leukodystrophy-2 is an autosomal recessively inherited leukodystrophy with childhood onset resulting from mutations in the gene encoding the gap junction protein connexin 47 (Cx47, encoded by GJC2). Cx47 is expressed specifically in oligodendrocytes and is crucial for gap junctional communication throughout the central nervous system. Previous studies confirmed that a cell autonomous loss-of-function mechanism underlies hypomyelinating leukodystrophy-2 and that transgenic oligodendrocyte-specific expression of another connexin, Cx32 (GJB1), can restore gap junctions in oligodendrocytes to achieve correction of the pathology in a disease model. To develop an oligodendrocyte-targeted gene therapy, we cloned the GJC2/Cx47 gene under the myelin basic protein promoter and used an adeno-associated viral vector (AAV.MBP.Cx47myc) to deliver the gene to postnatal Day 10 mice via a single intracerebral injection in the internal capsule area. Lasting Cx47 expression specifically in oligodendrocytes was detected in Cx47 single knockout and Cx32/Cx47 double knockout mice up to 12 weeks post-injection, including the corpus callosum and the internal capsule but also in more distant areas of the cerebrum and in the spinal cord. Application of this oligodendrocyte-targeted somatic gene therapy at postnatal Day 10 in groups of double knockout mice, a well characterized model of hypomyelinating leukodystrophy-2, resulted in significant improvement in motor performance and coordination at 1 month of age in treated compared to mock-treated mice, as well as prolonged survival. Furthermore, immunofluorescence and morphological analysis revealed improvement in demyelination, oligodendrocyte apoptosis, inflammation, and astrogliosis, all typical features of this leukodystrophy model in both brain and spinal cord. Functional dye transfer analysis confirmed the re-establishment of oligodendrocyte gap junctional connectivity in treated as opposed to untreated mice. These results provide a significant advance in the development of oligodendrocyte-cell specific gene therapy. Adeno-associated viral vectors can be used to target therapeutic expression of a myelin gene to oligodendrocytes. We show evidence for the first somatic gene therapy approach to treat hypomyelinating leukodystrophy-2 preclinically, providing a potential treatment for this and similar forms of leukodystrophies.


Assuntos
Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Terapia Genética/métodos , Leucoencefalopatias , Oligodendroglia/metabolismo , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Apoptose/genética , Conexinas/deficiência , Conexinas/genética , Dependovirus/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Leucoencefalopatias/genética , Leucoencefalopatias/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos dos Movimentos/etiologia , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Desempenho Psicomotor/fisiologia , Proteína beta-1 de Junções Comunicantes
9.
PLoS Comput Biol ; 10(7): e1003764, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25077940

RESUMO

Technological advances have unraveled the existence of small clusters of co-active neurons in the neocortex. The functional implications of these microcircuits are in large part unexplored. Using a heavily constrained biophysical model of a L5 PFC microcircuit, we recently showed that these structures act as tunable modules of persistent activity, the cellular correlate of working memory. Here, we investigate the mechanisms that underlie persistent activity emergence (ON) and termination (OFF) and search for the minimum network size required for expressing these states within physiological regimes. We show that (a) NMDA-mediated dendritic spikes gate the induction of persistent firing in the microcircuit. (b) The minimum network size required for persistent activity induction is inversely proportional to the synaptic drive of each excitatory neuron. (c) Relaxation of connectivity and synaptic delay constraints eliminates the gating effect of NMDA spikes, albeit at a cost of much larger networks. (d) Persistent activity termination by increased inhibition depends on the strength of the synaptic input and is negatively modulated by dADP. (e) Slow synaptic mechanisms and network activity contain predictive information regarding the ability of a given stimulus to turn ON and/or OFF persistent firing in the microcircuit model. Overall, this study zooms out from dendrites to cell assemblies and suggests a tight interaction between dendritic non-linearities and network properties (size/connectivity) that may facilitate the short-memory function of the PFC.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Fenômenos Biofísicos/fisiologia , Biologia Computacional , Simulação por Computador , N-Metilaspartato , Ácido gama-Aminobutírico
10.
iScience ; 27(2): 108821, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38333701

RESUMO

The human brain is characterized by the upregulation of synaptic, mainly glutamatergic, transmission, but its evolutionary origin(s) remain elusive. Here we approached this fundamental question by studying mice transgenic (Tg) for GLUD2, a human gene involved in glutamate metabolism that emerged in the hominoid and evolved concomitantly with brain expansion. We demonstrate that Tg mice express the human enzyme in hippocampal astrocytes and CA1-CA3 pyramidal neurons. LTP, evoked by theta-burst stimulation, is markedly enhanced in the CA3-CA1 synapses of Tg mice, with patch-clamp recordings from CA1 pyramidal neurons revealing increased sNMDA currents. LTP enhancement is blocked by D-lactate, implying that GLUD2 potentiates L-lactate-mediated astrocyte-neuron interaction. Dendritic spine density and synaptogenesis are increased in the hippocampus of Tg mice, which exhibit enhanced responses to sensory stimuli and improved performance on complex memory tasks. Hence, GLUD2 likely contributed to human brain evolution by enhancing synaptic plasticity and metabolic processes central to cognitive functions.

11.
PLoS Comput Biol ; 8(4): e1002489, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22570601

RESUMO

Proper functioning of working memory involves the expression of stimulus-selective persistent activity in pyramidal neurons of the prefrontal cortex (PFC), which refers to neural activity that persists for seconds beyond the end of the stimulus. The mechanisms which PFC pyramidal neurons use to discriminate between preferred vs. neutral inputs at the cellular level are largely unknown. Moreover, the presence of pyramidal cell subtypes with different firing patterns, such as regular spiking and intrinsic bursting, raises the question as to what their distinct role might be in persistent firing in the PFC. Here, we use a compartmental modeling approach to search for discriminatory features in the properties of incoming stimuli to a PFC pyramidal neuron and/or its response that signal which of these stimuli will result in persistent activity emergence. Furthermore, we use our modeling approach to study cell-type specific differences in persistent activity properties, via implementing a regular spiking (RS) and an intrinsic bursting (IB) model neuron. We identify synaptic location within the basal dendrites as a feature of stimulus selectivity. Specifically, persistent activity-inducing stimuli consist of activated synapses that are located more distally from the soma compared to non-inducing stimuli, in both model cells. In addition, the action potential (AP) latency and the first few inter-spike-intervals of the neuronal response can be used to reliably detect inducing vs. non-inducing inputs, suggesting a potential mechanism by which downstream neurons can rapidly decode the upcoming emergence of persistent activity. While the two model neurons did not differ in the coding features of persistent activity emergence, the properties of persistent activity, such as the firing pattern and the duration of temporally-restricted persistent activity were distinct. Collectively, our results pinpoint to specific features of the neuronal response to a given stimulus that code for its ability to induce persistent activity and predict differential roles of RS and IB neurons in persistent activity expression.


Assuntos
Potenciais de Ação/fisiologia , Relógios Biológicos/fisiologia , Memória/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Células Piramidais/fisiologia , Transmissão Sináptica/fisiologia , Simulação por Computador , Humanos
12.
Proc Natl Acad Sci U S A ; 107(29): 13141-6, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20624961

RESUMO

Neurofibromatosis type I (NF1) is one of the most common single-gene causes of learning disabilities. Here, we use behavioral working memory probes and electrophysiological studies in a mouse model of NF1 (Nf1 heterozygous null mutants; Nf1(+/-)) to demonstrate that (i) Neurofibromin regulates prefrontal and striatal inhibitory networks, specifically activity-dependent GABA release and (ii) is required for working memory performance, with inhibition-dependent working memory deficits seen in Nf1(+/-) mice. We find that increased inhibition in medial prefrontal cortex (mPFC) is sufficient to alter persistent activity in a biophysical model of an mPFC microcircuit, suggesting a possible mechanism for Nf1(+/-) working memory deficits. Accordingly, working memory assays applied during functional MRI (fMRI) studies in human subjects with NF1 reveal hypoactivation of corticostriatal networks, which is associated with impaired working memory performance. Collectively, these integrative mouse and human studies reveal molecular and cellular mechanisms contributing to working memory deficits in NF1.


Assuntos
Memória de Curto Prazo/fisiologia , Neostriado/metabolismo , Inibição Neural/fisiologia , Neurofibromina 1/metabolismo , Animais , Comportamento Animal/fisiologia , Simulação por Computador , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Humanos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Camundongos , Modelos Biológicos , Neostriado/fisiopatologia , Neurofibromatose 1/fisiopatologia , Neurofibromina 1/deficiência , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Transdução de Sinais , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo , Proteínas ras/metabolismo
13.
ChemMedChem ; 17(15): e202200246, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35642621

RESUMO

Local anesthetics occupy a prime position in clinical medicine as they temporarily relieve the pain by blocking voltage-gated sodium channels. However, limited structural diversity, problems with the efficiency of syntheses and increasing toxicity, mean that alternative scaffolds with improved chemical syntheses are urgently needed. Here, we demonstrate a multicomponent reaction (MCR)-based approach both towards the synthesis of commercial local anesthetics and towards novel derivatives as potential anesthesia candidates via scaffold hopping. The reactions are efficient and scalable, and several single-crystal structures have been obtained. In addition, our methodology has been applied to the synthesis of the antianginal drug ranolazine, via an Ugi three-component reaction. Representative derivatives from our libraries were evaluated as neuronal activity inhibitors using local field potential recordings (LFPs) in mouse hippocampal brain slices and showed very promising results. This study highlights new opportunities in drug discovery targeting local anesthetics.


Assuntos
Anestésicos Locais , Descoberta de Drogas , Anestésicos Locais/farmacologia , Animais , Camundongos
14.
Nat Commun ; 13(1): 680, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115539

RESUMO

The pruning of dendritic spines during development requires autophagy. This process is facilitated by long-term depression (LTD)-like mechanisms, which has led to speculation that LTD, a fundamental form of synaptic plasticity, also requires autophagy. Here, we show that the induction of LTD via activation of NMDA receptors or metabotropic glutamate receptors initiates autophagy in the postsynaptic dendrites in mice. Dendritic autophagic vesicles (AVs) act in parallel with the endocytic machinery to remove AMPA receptor subunits from the membrane for degradation. During NMDAR-LTD, key postsynaptic proteins are sequestered for autophagic degradation, as revealed by quantitative proteomic profiling of purified AVs. Pharmacological inhibition of AV biogenesis, or conditional ablation of atg5 in pyramidal neurons abolishes LTD and triggers sustained potentiation in the hippocampus. These deficits in synaptic plasticity are recapitulated by knockdown of atg5 specifically in postsynaptic pyramidal neurons in the CA1 area. Conducive to the role of synaptic plasticity in behavioral flexibility, mice with autophagy deficiency in excitatory neurons exhibit altered response in reversal learning. Therefore, local assembly of the autophagic machinery in dendrites ensures the degradation of postsynaptic components and facilitates LTD expression.


Assuntos
Autofagia/fisiologia , Espinhas Dendríticas/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Proteoma/metabolismo , Proteômica/métodos , Potenciais Sinápticos/fisiologia , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Células Cultivadas , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
15.
Biomedicines ; 10(3)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35327415

RESUMO

Neurotrophins are growth factors that exert important neuroprotective effects by preventing neuronal death and synaptic loss. Nerve Growth Factor (NGF) acts through the activation of its high-affinity, pro-survival TrkA and low-affinity, pro-apoptotic p75NTR receptors. NGF has been shown to slow or prevent neurodegenerative signals in Alzheimer's Disease (AD) progression. However, its low bioavailability and its blood-brain-barrier impermeability limit the use of NGF as a potential therapeutic agent against AD. Based on our previous findings on synthetic dehydroepiandrosterone derivatives, we identified a novel NGF mimetic, named ENT-A013, which selectively activates TrkA and exerts neuroprotective, anti-amyloid-ß actions. We now report the chemical synthesis, in silico modelling, metabolic stability, CYP-mediated reaction phenotyping and biological characterization of ENT-A013 under physiological and neurodegenerative conditions. We show that ENT-A013 selectively activates the TrkA receptor and its downstream kinases Akt and Erk1/2 in PC12 cells, protecting these cells from serum deprivation-induced cell death. Moreover, ENT-A013 promotes survival of primary Dorsal Root Ganglion (DRG) neurons upon NGF withdrawal and protects hippocampal neurons against Amyloid ß-induced apoptosis and synaptic loss. Furthermore, this neurotrophin mimetic partially restores LTP impairment. In conclusion, ENT-A013 represents a promising new lead molecule for developing therapeutics against neurodegenerative disorders, such as Alzheimer's Disease, selectively targeting TrkA-mediated pro-survival signals.

16.
PLoS Comput Biol ; 6(12): e1001038, 2010 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21187899

RESUMO

The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code.


Assuntos
Região CA1 Hipocampal/citologia , Biologia Computacional/métodos , Modelos Neurológicos , Células Piramidais/fisiologia , Algoritmos , Animais , Análise por Conglomerados , Reprodutibilidade dos Testes , Sinapses/fisiologia , Fatores de Tempo
17.
Mech Ageing Dev ; 194: 111415, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33338498

RESUMO

Working memory refers to a cognitive function that provides temporary storage and manipulation of the information necessary for complex cognitive tasks. Due to its central role in general cognition, several studies have investigated the possibility that training on working memory tasks could improve not only working memory function but also increase other cognitive abilities or modulate other behaviors. This possibility is still highly controversial, with prior studies providing contradictory findings. The lack of systematic approaches and methodological shortcomings complicates this debate even more. This review highlights the impact of working memory training at different ages on humans. Finally, it demonstrates several findings about the neural substrate of training in both humans and experimental animals, including non-human primates and rodents.


Assuntos
Envelhecimento , Comportamento Animal , Cognição , Memória de Curto Prazo , Córtex Pré-Frontal/fisiologia , Adaptação Fisiológica , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Envelhecimento/psicologia , Animais , Criança , Sinapses Elétricas/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Plasticidade Neuronal , Adulto Jovem
18.
Front Behav Neurosci ; 15: 689193, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177484

RESUMO

The neonatal MK-801 model of schizophrenia has been developed based on the neurodevelopmental and NMDA receptor hypofunction hypotheses of schizophrenia. This animal model is generated with the use of the NMDA receptor antagonist, MK-801, during different temporal windows of postnatal life of rodents leading to behavioral defects in adulthood. However, no studies have examined the role of specific postnatal time periods in the neonatal MK-801 (nMK-801) rodent model and the resulting behavioral and neurobiological effects. Thus, the goal of this study is to systematically investigate the role of NMDA hypofunction, during specific temporal windows in postnatal life on different cognitive and social behavioral paradigms, as well as various neurobiological effects during adulthood. Both female and male mice were injected intraperitoneally (i.p.) with MK-801 during postnatal days 7-14 (p7-14) or 11-15 (p11-15). Control mice were injected with saline during the respective time period. In adulthood, mice were tested in various cognitive and social behavioral tasks. Mice nMK-801-treated on p7-14 show impaired performance in the novel object, object-to-place, and temporal order object recognition (TOR) tasks, the sociability test, and contextual fear extinction. Mice nMK-801-treated on p11-15 only affects performance in the TOR task, the social memory test, and contextual fear extinction. No differences were identified in the expression of NMDA receptor subunits, the synapsin or PSD-95 proteins, either in the prefrontal cortex (PFC) or the hippocampus (HPC), brain regions significantly affected in schizophrenia. The number of parvalbumin (PV)-expressing cells is significantly reduced in the PFC, but not in the HPC, of nMK-801-treated mice on p7-14 compared to their controls. No differences in PV-expressing cells (PFC or HPC) were identified in nMK-801-treated mice on p11-15. We further examined PFC function by recording spontaneous activity in a solution that allows up state generation. We find that the frequency of up states is significantly reduced in both nMK-801-treated mice on p7-14 and p11-15 compared to saline-treated mice. Furthermore, we find adaptations in the gamma and high gamma activity in nMK-801-treated mice. In conclusion, our results show that MK-801 treatment during specific postnatal temporal windows has differential effects on cognitive and social behaviors, as well as on underlying neurobiological substrates.

19.
Mech Ageing Dev ; 192: 111364, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32991920

RESUMO

Several laboratory animal models have shown that dietary energy restriction (ER) can promote longevity and improve various health aspects in old age. However, whether the entire spectrum of ER-induced short- and long-term physiological and metabolic adaptions is translatable to humans remains to be determined. In this review article, we present recent evidence towards the elucidation of the impact of ER on brain physiology and in age-related neurodegenerative diseases. We also discuss modulatory influences of ER on metabolism and overall on human health, limitations of current experimental designs as well as future perspectives for ER trials in humans. Finally, we summarize signaling pathways and processes known to be affected by both aging and ER with a special emphasis on the link between ER and cellular proteostasis.


Assuntos
Encéfalo/fisiologia , Restrição Calórica/métodos , Envelhecimento Cognitivo/fisiologia , Longevidade/fisiologia , Doenças Neurodegenerativas , Animais , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Proteostase , Transdução de Sinais
20.
NPJ Regen Med ; 5: 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566251

RESUMO

Neural stem cell (NSC) grafts have demonstrated significant effects in animal models of spinal cord injury (SCI), yet their clinical translation remains challenging. Significant evidence suggests that the supporting matrix of NSC grafts has a crucial role in regulating NSC effects. Here we demonstrate that grafts based on porous collagen-based scaffolds (PCSs), similar to biomaterials utilized clinically in induced regeneration, can deliver and protect embryonic NSCs at SCI sites, leading to significant improvement in locomotion recovery in an experimental mouse SCI model, so that 12 weeks post-injury locomotion performance of implanted animals does not statistically differ from that of uninjured control animals. NSC-seeded PCS grafts can modulate key processes required to induce regeneration in SCI lesions including enhancing NSC neuronal differentiation and functional integration in vivo, enabling robust axonal elongation, and reducing astrogliosis. Our findings suggest that the efficacy and translational potential of emerging NSC-based SCI therapies could be enhanced by delivering NSC via scaffolds derived from well-characterized clinically proven PCS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA