Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Cell ; 187(7): 1801-1818.e20, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38471500

RESUMO

The repertoire of modifications to bile acids and related steroidal lipids by host and microbial metabolism remains incompletely characterized. To address this knowledge gap, we created a reusable resource of tandem mass spectrometry (MS/MS) spectra by filtering 1.2 billion publicly available MS/MS spectra for bile-acid-selective ion patterns. Thousands of modifications are distributed throughout animal and human bodies as well as microbial cultures. We employed this MS/MS library to identify polyamine bile amidates, prevalent in carnivores. They are present in humans, and their levels alter with a diet change from a Mediterranean to a typical American diet. This work highlights the existence of many more bile acid modifications than previously recognized and the value of leveraging public large-scale untargeted metabolomics data to discover metabolites. The availability of a modification-centric bile acid MS/MS library will inform future studies investigating bile acid roles in health and disease.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Metabolômica , Espectrometria de Massas em Tandem , Animais , Humanos , Ácidos e Sais Biliares/química , Metabolômica/métodos , Poliaminas , Espectrometria de Massas em Tandem/métodos , Bases de Dados de Compostos Químicos
2.
Nature ; 626(7998): 419-426, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38052229

RESUMO

Determining the structure and phenotypic context of molecules detected in untargeted metabolomics experiments remains challenging. Here we present reverse metabolomics as a discovery strategy, whereby tandem mass spectrometry spectra acquired from newly synthesized compounds are searched for in public metabolomics datasets to uncover phenotypic associations. To demonstrate the concept, we broadly synthesized and explored multiple classes of metabolites in humans, including N-acyl amides, fatty acid esters of hydroxy fatty acids, bile acid esters and conjugated bile acids. Using repository-scale analysis1,2, we discovered that some conjugated bile acids are associated with inflammatory bowel disease (IBD). Validation using four distinct human IBD cohorts showed that cholic acids conjugated to Glu, Ile/Leu, Phe, Thr, Trp or Tyr are increased in Crohn's disease. Several of these compounds and related structures affected pathways associated with IBD, such as interferon-γ production in CD4+ T cells3 and agonism of the pregnane X receptor4. Culture of bacteria belonging to the Bifidobacterium, Clostridium and Enterococcus genera produced these bile amidates. Because searching repositories with tandem mass spectrometry spectra has only recently become possible, this reverse metabolomics approach can now be used as a general strategy to discover other molecules from human and animal ecosystems.


Assuntos
Amidas , Ácidos e Sais Biliares , Ésteres , Ácidos Graxos , Metabolômica , Animais , Humanos , Bifidobacterium/metabolismo , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Clostridium/metabolismo , Estudos de Coortes , Doença de Crohn/metabolismo , Enterococcus/metabolismo , Ésteres/química , Ésteres/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Metabolômica/métodos , Fenótipo , Receptor de Pregnano X/metabolismo , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Amidas/química , Amidas/metabolismo
3.
Nature ; 606(7916): 968-975, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676490

RESUMO

Branched fatty acid (FA) esters of hydroxy FAs (HFAs; FAHFAs) are recently discovered lipids that are conserved from yeast to mammals1,2. A subfamily, palmitic acid esters of hydroxy stearic acids (PAHSAs), are anti-inflammatory and anti-diabetic1,3. Humans and mice with insulin resistance have lower PAHSA levels in subcutaneous adipose tissue and serum1. PAHSA administration improves glucose tolerance and insulin sensitivity and reduces inflammation in obesity, diabetes and immune-mediated diseases1,4-7. The enzyme(s) responsible for FAHFA biosynthesis in vivo remains unknown. Here we identified adipose triglyceride lipase (ATGL, also known as patatin-like phospholipase domain containing 2 (PNPLA2)) as a candidate biosynthetic enzyme for FAHFAs using chemical biology and proteomics. We discovered that recombinant ATGL uses a transacylation reaction that esterifies an HFA with a FA from triglyceride (TG) or diglyceride to produce FAHFAs. Overexpression of wild-type, but not catalytically dead, ATGL increases FAHFA biosynthesis. Chemical inhibition of ATGL or genetic deletion of Atgl inhibits FAHFA biosynthesis and reduces the levels of FAHFA and FAHFA-TG. Levels of endogenous and nascent FAHFAs and FAHFA-TGs are 80-90 per cent lower in adipose tissue of mice in which Atgl is knocked out specifically in the adipose tissue. Increasing TG levels by upregulating diacylglycerol acyltransferase (DGAT) activity promotes FAHFA biosynthesis, and decreasing DGAT activity inhibits it, reinforcing TGs as FAHFA precursors. ATGL biosynthetic transacylase activity is present in human adipose tissue underscoring its potential clinical relevance. In summary, we discovered the first, to our knowledge, biosynthetic enzyme that catalyses the formation of the FAHFA ester bond in mammals. Whereas ATGL lipase activity is well known, our data establish a paradigm shift demonstrating that ATGL transacylase activity is biologically important.


Assuntos
Aciltransferases , Ésteres , Ácidos Graxos , Hidroxiácidos , Aciltransferases/genética , Aciltransferases/metabolismo , Tecido Adiposo/química , Tecido Adiposo/metabolismo , Animais , Diglicerídeos , Esterificação , Ésteres/química , Ésteres/metabolismo , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Humanos , Hidroxiácidos/química , Hidroxiácidos/metabolismo , Resistência à Insulina , Camundongos , Triglicerídeos
4.
Proc Natl Acad Sci U S A ; 121(28): e2318691121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968121

RESUMO

Dietary lipids play an essential role in regulating the function of the gut microbiota and gastrointestinal tract, and these luminal interactions contribute to mediating host metabolism. Palmitic Acid Hydroxy Stearic Acids (PAHSAs) are a family of lipids with antidiabetic and anti-inflammatory properties, but whether the gut microbiota contributes to their beneficial effects on host metabolism is unknown. Here, we report that treating chow-fed female and male germ-free (GF) mice with PAHSAs improves glucose tolerance, but these effects are lost upon high fat diet (HFD) feeding. However, transfer of feces from PAHSA-treated, but not vehicle-treated, chow-fed conventional mice increases insulin sensitivity in HFD-fed GF mice. Thus, the gut microbiota is necessary for, and can transmit, the insulin-sensitizing effects of PAHSAs in HFD-fed GF male mice. Analyses of the cecal metagenome and lipidome of PAHSA-treated mice identified multiple lipid species that associate with the gut commensal Bacteroides thetaiotaomicron (Bt) and with insulin sensitivity resulting from PAHSA treatment. Supplementing live, and to some degree, heat-killed Bt to HFD-fed female mice prevented weight gain, reduced adiposity, improved glucose tolerance, fortified the colonic mucus barrier and reduced systemic inflammation compared to HFD-fed controls. These effects were not observed in HFD-fed male mice. Furthermore, ovariectomy partially reversed the beneficial Bt effects on host metabolism, indicating a role for sex hormones in mediating the Bt probiotic effects. Altogether, these studies highlight the fact that PAHSAs can modulate the gut microbiota and that the microbiota is necessary for the beneficial metabolic effects of PAHSAs in HFD-fed mice.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Resistência à Insulina , Obesidade , Animais , Masculino , Feminino , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/microbiologia , Obesidade/etiologia , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Ácidos Esteáricos/metabolismo , Ácido Palmítico/metabolismo , Fezes/microbiologia , Camundongos Obesos
5.
Nat Chem Biol ; 19(2): 187-197, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36266352

RESUMO

Lipids contribute to the structure, development, and function of healthy brains. Dysregulated lipid metabolism is linked to aging and diseased brains. However, our understanding of lipid metabolism in aging brains remains limited. Here we examined the brain lipidome of mice across their lifespan using untargeted lipidomics. Co-expression network analysis highlighted a progressive decrease in 3-sulfogalactosyl diacylglycerols (SGDGs) and SGDG pathway members, including the potential degradation products lyso-SGDGs. SGDGs show an age-related decline specifically in the central nervous system and are associated with myelination. We also found that an SGDG dramatically suppresses LPS-induced gene expression and release of pro-inflammatory cytokines from macrophages and microglia by acting on the NF-κB pathway. The detection of SGDGs in human and macaque brains establishes their evolutionary conservation. This work enhances interest in SGDGs regarding their roles in aging and inflammatory diseases and highlights the complexity of the brain lipidome and potential biological functions in aging.


Assuntos
Envelhecimento , Lipídeos , Animais , Humanos , Camundongos , Envelhecimento/genética , Anti-Inflamatórios , Encéfalo/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo
6.
BMC Biol ; 22(1): 83, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609948

RESUMO

BACKGROUND: Glioblastoma (GBM) is an aggressive brain cancer associated with poor prognosis, intrinsic heterogeneity, plasticity, and therapy resistance. In some GBMs, cell proliferation is fueled by a transcriptional regulator, repressor element-1 silencing transcription factor (REST). RESULTS: Using CRISPR/Cas9, we identified GBM cell lines dependent on REST activity. We developed new small molecule inhibitory compounds targeting small C-terminal domain phosphatase 1 (SCP1) to reduce REST protein level and transcriptional activity in glioblastoma cells. Top leads of the series like GR-28 exhibit potent cytotoxicity, reduce REST protein level, and suppress its transcriptional activity. Upon the loss of REST protein, GBM cells can potentially compensate by rewiring fatty acid metabolism, enabling continued proliferation. Combining REST inhibition with the blockade of this compensatory adaptation using long-chain acyl-CoA synthetase inhibitor Triacsin C demonstrated substantial synergetic potential without inducing hepatotoxicity. CONCLUSIONS: Our results highlight the efficacy and selectivity of targeting REST alone or in combination as a therapeutic strategy to combat high-REST GBM.


Assuntos
Glioblastoma , Fatores de Transcrição , Humanos , Glioblastoma/tratamento farmacológico , Regulação da Expressão Gênica , Encéfalo , Agressão
7.
Bioorg Med Chem Lett ; 95: 129434, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37557924

RESUMO

An abbreviated synthesis of the cell permeable fluorophosphonate-alkyne probe (FP-alkyne) for the broad assessment of serine hydrolase activity has been developed. While FP-alkyne has proven pivotal in numerous chemical biology studies access has relied on a lengthy preparation over nine steps. We have developed a four-step synthesis, starting from commercially available compounds, with three purification steps to provide a new expedited route allowing easy access to a useful tool compound for exploring serine hydrolases chemistry and biology. This route was used in our own studies to generate FP-alkyne which in turn was used to identify the enzyme responsible for Fatty Acid Esters of Hydroxy Fatty Acids (FAHFA) biosynthesis. The use of this route can enable the syntheses of new tool compounds in addition to improving accessibility to FP-alkyne.

8.
J Lipid Res ; 62: 100108, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34418413

RESUMO

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous lipids with antidiabetic and anti-inflammatory effects. Each FAHFA family consists of esters with different acyl chains and multiple isomers with branch points at different carbons. Some FAHFAs, including palmitic acid hydroxy stearic acids (PAHSAs), improve insulin sensitivity and glucose tolerance in mice by enhancing glucose-stimulated insulin secretion (GSIS), insulin-stimulated glucose transport, and insulin action to suppress hepatic glucose production and reducing adipose tissue inflammation. However, little is known about the biological effects of other FAHFAs. Here, we investigated whether PAHSAs, oleic acid hydroxy stearic acid, palmitoleic acid hydroxy stearic acid, and stearic acid hydroxy stearic acid potentiate GSIS in ß-cells and human islets, insulin-stimulated glucose uptake in adipocytes, and anti-inflammatory effects in immune cells. We also investigated whether they activate G protein-coupled receptor 40, which mediates the effects of PAHSAs on insulin secretion and sensitivity in vivo. We show that many FAHFAs potentiate GSIS, activate G protein-coupled receptor 40, and attenuate LPS-induced chemokine and cytokine expression and secretion and phagocytosis in immune cells. However, fewer FAHFAs augment insulin-stimulated glucose uptake in adipocytes. S-9-PAHSA, but not R-9-PAHSA, potentiated GSIS and glucose uptake, while both stereoisomers had anti-inflammatory effects. FAHFAs containing unsaturated acyl chains with higher branching from the carboxylate head group are more likely to potentiate GSIS, whereas FAHFAs with lower branching are more likely to be anti-inflammatory. This study provides insight into the specificity of the biological actions of different FAHFAs and could lead to the development of FAHFAs to treat metabolic and immune-mediated diseases.


Assuntos
Ésteres/metabolismo , Ácidos Graxos/metabolismo , Adulto , Ésteres/química , Ácidos Graxos/química , Feminino , Glucose/metabolismo , Humanos , Secreção de Insulina , Masculino , Pessoa de Meia-Idade , Estrutura Molecular , Estereoisomerismo
9.
J Biol Chem ; 294(27): 10698-10707, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31152059

RESUMO

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a recently discovered class of biologically active lipids. Here we identify the linoleic acid ester of 13-hydroxy linoleic acid (13-LAHLA) as an anti-inflammatory lipid. An oat oil fraction and FAHFA-enriched extract from this fraction showed anti-inflammatory activity in a lipopolysaccharide-induced cytokine secretion assay. Structural studies identified three LAHLA isomers (15-, 13-, and 9-LAHLA) as being the most abundant FAHFAs in the oat oil fraction. Of these LAHLAs, 13-LAHLA is the most abundant LAHLA isomer in human serum after ingestion of liposomes made of fractionated oat oil, and it is also the most abundant endogenous LAHLA in mouse and human adipose tissue. As a result, we chemically synthesized 13-LAHLA for biological assays. 13-LAHLA suppresses lipopolysaccharide-stimulated secretion of cytokines and expression of pro-inflammatory genes. These studies identify LAHLAs as an evolutionarily conserved lipid with anti-inflammatory activity in mammalian cells.


Assuntos
Anti-Inflamatórios/química , Avena/química , Ésteres/química , Ácidos Linoleicos/química , Tecido Adiposo/química , Tecido Adiposo/metabolismo , Animais , Anti-Inflamatórios/análise , Anti-Inflamatórios/farmacologia , Avena/metabolismo , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Citocinas/metabolismo , Humanos , Lipopolissacarídeos/toxicidade , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espectrometria de Massas , Camundongos , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Células RAW 264.7 , Estereoisomerismo
10.
Blood Cells Mol Dis ; 84: 102457, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32604056

RESUMO

Eupalinilide E was assessed for ex-vivo expansion activity on hematopoietic stem cells (HSCs) from human cord blood (CB) CD34+ cells in serum-free, SCF, TPO and FL stimulated 7 day cultures. Eupalinilide E ex-vivo enhanced phenotyped (p) HSCs and glycolysis of CD34+ cells isolated 7 days after culture as measured by extracellular acidification rate, but did not alone show enhanced NSG engrafting capability of HSCs as determined by chimerism and numbers of SCID Repopulating cells, a quantitative measure of functional human HSCs. This is another example of pHSCs not necessarily recapitulating functional activity of these cells. Lack of effect on engrafting HSCs may be due to a number of possibilities, including down regulation of CXCR4 or of the homing capacity of these treated cells. However, Eupalinilide did act in an additive to synergistic fashion with UM171 to enhance ex vivo expansion of both pHSCs, and functionally engrafting HSCs. While reasons for the disconnect between pHSC and function of HSCs with Eupalinilide E alone cultured CB CD34+ cells is yet to be determined, the data suggest possible future use of Eupalinilide and UM171 together to enhance ex vivo production of CB HSCs for clinical hematopoietic cell transplantation.


Assuntos
Sangue Fetal/citologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Indóis/farmacologia , Pirimidinas/farmacologia , Sesquiterpenos/farmacologia , Animais , Antígenos CD34/análise , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/farmacologia , Sangue Fetal/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Humanos , Camundongos , Camundongos SCID
11.
J Antimicrob Chemother ; 75(10): 2925-2932, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32617557

RESUMO

BACKGROUND: Treatment of schistosomiasis, a neglected disease, relies on just one partially effective drug, praziquantel. We revisited the 9-acridanone hydrazone, Ro 15-5458, a largely forgotten antischistosomal lead compound. METHODS: Ro 15-5458 was evaluated in juvenile and adult Schistosoma mansoni-infected mice. We studied dose-response, hepatic shift and stage specificity. The metabolic stability of Ro 15-5458 was measured in the presence of human and mouse liver microsomes, and human hepatocytes; the latter also served to identify metabolites. Pharmacokinetic parameters were measured in naive mice. The efficacy of Ro 15-5458 was also assessed in S. haematobium-infected hamsters and S. japonicum-infected mice. RESULTS: Ro 15-5458 had single-dose ED50 values of 15 and 5.3 mg/kg in mice harbouring juvenile and adult S. mansoni infections, respectively. An ED50 value of 17 mg/kg was measured in S. haematobium-infected hamsters; however, the compound was inactive at up to 100 mg/kg in S. japonicum-infected mice. The drug-induced hepatic shift occurred between 48 and 66 h post treatment. A single oral dose of 50 mg/kg of Ro 15-5458 had high activity against all tested S. mansoni stages (1-, 7-, 14-, 21- and 49-day-old). In vitro, human hepatocytes produced N-desethyl and glucuronide metabolites; otherwise Ro 15-5458 was metabolically stable in the presence of microsomes or whole hepatocytes. The maximum plasma concentration was approximately 8.13 µg/mL 3 h after a 50 mg/kg oral dose and the half-life was approximately 4.9 h. CONCLUSIONS: Ro 15-5458 has high activity against S. mansoni and S. haematobium, yet lacks activity against S. japonicum, which is striking. This will require further investigation, as a broad-spectrum antischistosomal drug is desirable.


Assuntos
Esquistossomose mansoni , Esquistossomicidas , Acridinas , Animais , Cricetinae , Hidrazonas/uso terapêutico , Camundongos , Schistosoma mansoni , Esquistossomose mansoni/tratamento farmacológico , Esquistossomicidas/uso terapêutico
12.
Bioorg Med Chem Lett ; 30(22): 127512, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32871269

RESUMO

A series of novel purine linked piperazine derivatives were synthesized to identify new, potent inhibitors of Mycobacterium tuberculosis. The compounds were designed to target MurB disrupting the biosynthesis of the peptidoglycan and exert antiproliferative effects. The first series of purine-2,6-dione linked piperazine derivatives were synthesized using an advanced intermediate 1-(3,4-difluorobenzyl)-7-(but-2-ynyl)-3-methyl-8-(piperazin-1-yl)-1H-purine-2,6(3H,7H)-dione hydrochloride (6) which was coupled with varied carboxylic acid chloride derivatives. Following this piperazine linked derivatives were also synthesized from 6 using diverse isocyanate partners. The anti-mycobacterial activity of the analogues was tested againstMycobacterium tuberculosis H37Rv which revealed a cluster of six analogues (11, 24,27, 32, 33 and34), possessed promising activity. In comparison, a set of these new compounds possessed greater potencies relative to current drugs used in the clinic such as Ethambutol. These results were also correlated with computational molecular docking analysis, providing models for strong interactions of the inhibitors with MurB providing a template for the future development of preclinical agents against Mycobacterium tuberculosis.


Assuntos
Antituberculosos/farmacologia , Desenho de Fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Piperazina/farmacologia , Purinas/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piperazina/síntese química , Piperazina/química , Purinas/síntese química , Purinas/química , Relação Estrutura-Atividade
13.
J Am Chem Soc ; 141(22): 8798-8806, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31056915

RESUMO

FAHFAs are a class of bioactive lipids, which show great promise for treating diabetes and inflammatory diseases. Deciphering the metabolic pathways that regulate endogenous FAHFA levels is critical for developing diagnostic and therapeutic strategies. However, it remains unclear how FAHFAs are metabolized in cells or tissues. Here, we investigate whether FAHFAs can be incorporated into other lipid classes and identify a novel class of endogenous lipids, FAHFA-containing triacylglycerols (FAHFA-TGs), which contain a FAHFA group esterified to the glycerol backbone. Isotope-labeled FAHFAs are incorporated into FAHFA-TGs when added to differentiated adipocytes, which implies the existence of enzymes and metabolic pathways capable of synthesizing these lipids. Induction of lipolysis (i.e., triacylglycerol hydrolysis) in adipocytes is associated with marked increases in nonesterified FAHFA levels, demonstrating that FAHFA-TGs breakdown is a regulator of cellular FAHFA levels. To quantify FAHFA levels in FAHFA-TGs and determine their regioisomeric distributions, we developed a mild alkaline hydrolysis method that liberates FAHFAs from triacylglycerols for easier detection. FAHFA-TG concentrations are greater than 100-fold than that of nonesterified FAHFAs, indicating that FAHFA-TGs are a major reservoir of FAHFAs in cells and tissues. The discovery of FAHFA-TGs reveals a new branch of TG and FAHFA metabolism with potential roles in metabolic health and regulation of inflammation.


Assuntos
Ésteres/química , Ácidos Graxos/química , Triglicerídeos/química , Triglicerídeos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Hidrólise/efeitos dos fármacos , Camundongos
14.
Chem Rev ; 117(18): 12052-12086, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28771328

RESUMO

Stem cells possess remarkable potential for the treatment of a broad array of diseases including many that lack therapeutic options. However, the use of cell-based products derived from stem cells as therapeutics has limitations including rejection, sufficient availability, and lack of appropriate engraftment. Chemical control of stem cells provides potential solutions for overcoming many of the current limitations in cell-based therapeutics. The development of exogenous molecules to control stem cell self-renewal or differentiation has arrived at natural product-based agents as an important class of modulators. The ex vivo production of cryopreserved cellular products for use in tissue repair is a relatively new area of medicine in which the conventional hurdles to implementing chemicals to effect human health are changed. Translational challenges centered on chemistry, such as pharmacokinetics, are reduced. Importantly, in many cases the desired human tissues can be evaluated against new chemicals, and approaches to cellular regulation can be validated in the clinically applicable system. As a result linking new and existing laboratory syntheses of natural products with findings of the compounds' unique abilities to regulate stem cell fate provides opportunities for developing improved methods for tissue manufacture, accessing probe compounds, and generating new leads that yield manufactured cells with improved properties. This review provides a summary of natural products that have shown promise in controlling stem cell fate and which have also been fully synthesized thereby providing chemistry platforms for further development.


Assuntos
Produtos Biológicos/farmacologia , Células-Tronco/efeitos dos fármacos , Produtos Biológicos/síntese química , Produtos Biológicos/química , Humanos , Conformação Molecular , Células-Tronco/metabolismo
15.
Nature ; 499(7457): 192-6, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23846658

RESUMO

Methods for carbon-hydrogen (C-H) bond oxidation have a fundamental role in synthetic organic chemistry, providing functionality that is required in the final target molecule or facilitating subsequent chemical transformations. Several approaches to oxidizing aliphatic C-H bonds have been described, drastically simplifying the synthesis of complex molecules. However, the selective oxidation of aromatic C-H bonds under mild conditions, especially in the context of substituted arenes with diverse functional groups, remains a challenge. The direct hydroxylation of arenes was initially achieved through the use of strong Brønsted or Lewis acids to mediate electrophilic aromatic substitution reactions with super-stoichiometric equivalents of oxidants, significantly limiting the scope of the reaction. Because the products of these reactions are more reactive than the starting materials, over-oxidation is frequently a competitive process. Transition-metal-catalysed C-H oxidation of arenes with or without directing groups has been developed, improving on the acid-mediated process; however, precious metals are required. Here we demonstrate that phthaloyl peroxide functions as a selective oxidant for the transformation of arenes to phenols under mild conditions. Although the reaction proceeds through a radical mechanism, aromatic C-H bonds are selectively oxidized in preference to activated Csp3-H bonds. Notably, a wide array of functional groups are compatible with this reaction, and this method is therefore well suited for late-stage transformations of advanced synthetic intermediates. Quantum mechanical calculations indicate that this transformation proceeds through a novel addition-abstraction mechanism, a kind of 'reverse-rebound' mechanism as distinct from the common oxygen-rebound mechanism observed for metal-oxo oxidants. These calculations also identify the origins of the experimentally observed aryl selectivity.


Assuntos
Carbono/química , Hidrogênio/química , Abietanos/química , Derivados de Benzeno/química , Catálise , Ligação de Hidrogênio , Hidrólise , Hidroxilação , Metais , Oxidantes/química , Oxirredução , Oxigênio/química , Peróxidos/química , Fenóis/química , Teoria Quântica , Sesquiterpenos/química , Tocoferóis/química
16.
Anal Chem ; 90(8): 5358-5365, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29578702

RESUMO

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a recently discovered class of endogenous lipids with antidiabetic and anti-inflammatory activities. Interest in these lipids is due to their unique biological activites and the observation that insulin-resistant people have lower palmitic acid esters of hydroxystearic acid (PAHSA) levels, suggesting that a FAHFA deficiency may contribute to metabolic disease. Rigorous testing of this hypothesis will require the measurement of many clinical samples; however, current analytical workflows are too slow to enable samples to be analyzed quickly. Here we describe the development of a significantly faster workflow to measure FAHFAs that optimizes the fractionation and chromatography of these lipids. We can measure FAHFAs in 30 min with this new protocol versus 90 min using the older protocol with comparable performance in regioisomer detection and quantitation. We also discovered through this optimization that oleic acid esters of hydroxystearic acids (OAHSAs), another family of FAHFAs, have a much lower background signal than PAHSAs, which makes them easier to measure. Our faster workflow was able to quantify changes in PAHSAs and OAHSAs in mouse tissues and human plasma, highlighting the potential of this protocol for basic and clinical applications.


Assuntos
Ésteres/análise , Ácidos Graxos/análise , Cromatografia Líquida , Espectrometria de Massas , Estrutura Molecular , Extração em Fase Sólida
17.
J Am Chem Soc ; 139(13): 4943-4947, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28350171

RESUMO

Lipids have fundamental roles in the structure, energetics, and signaling of cells and organisms. The recent discovery of fatty acid esters of hydroxy fatty acids (FAHFAs), lipids with potent antidiabetic and anti-inflammatory activities, indicates that our understanding of the composition of lipidome and the function of lipids is incomplete. The ability to synthesize and test FAHFAs was critical in elucidating the roles of these lipids, but these studies were performed with racemic mixtures, and the role of stereochemistry remains unexplored. Here, we synthesized the R- and S- palmitic acid ester of 9-hydroxystearic acid (R-9-PAHSA, S-9-PAHSA). Access to highly enantioenriched PAHSAs enabled the development of a liquid chromatography-mass spectrometry (LC-MS) method to separate and quantify R- and S-9-PAHSA, and this approach identified R-9-PAHSA as the predominant stereoisomer that accumulates in adipose tissues from transgenic mice where FAHFAs were first discovered. Furthermore, biochemical analysis of 9-PAHSA biosynthesis and degradation indicate that the enzymes and pathways for PAHSA production are stereospecific, with cell lines favoring the production of R-9-PAHSA and carboxyl ester lipase (CEL), a PAHSA degradative enzyme, selectively hydrolyzing S-9-PAHSA. These studies highlight the role of stereochemistry in the production and degradation of PAHSAs and define the endogenous stereochemistry of 9-PAHSA in adipose tissue. This information will be useful in the identification and characterization of the pathway responsible for PAHSA biosynthesis, and access to enantiopure PAHSAs will elucidate the role of stereochemistry in PAHSA activity and metabolism in vivo.


Assuntos
Tecido Adiposo/química , Ésteres/química , Ácido Palmítico/química , Ácidos Esteáricos/química , Tecido Adiposo/metabolismo , Animais , Ésteres/síntese química , Ésteres/metabolismo , Células HEK293 , Humanos , Lipase/metabolismo , Lipídeos/química , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Ácido Palmítico/síntese química , Ácido Palmítico/metabolismo , Ácidos Esteáricos/metabolismo , Estereoisomerismo
18.
J Org Chem ; 82(9): 4640-4653, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28440078

RESUMO

Following the discovery that the guaianolide natural product eupalinilide E promotes the expansion of hematopoietic stem and progenitor cells; the development of a synthetic route to provide laboratory access to the natural product became a priority. Exploration of multiple synthetic routes yielded an approach that has permitted a scalable synthesis of the natural product. Two routes that failed to access eupalinilide E were triaged either as a result of providing an incorrect diastereomer or due to lack of synthetic efficiency. The successful strategy relied on late-stage allylic oxidations at two separate positions of the molecule, which significantly increased the breadth of reactions that could be used to this point. Subsequent to C-H bond oxidation, adaptations of existing chemical transformations were required to permit chemoselective reduction and oxidation reactions. These transformations included a modified Luche reduction and a selective homoallylic alcohol epoxidation.


Assuntos
Sesquiterpenos/síntese química , Laboratórios , Oxirredução
19.
J Am Chem Soc ; 138(18): 6068-73, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27096704

RESUMO

Improving the ex vivo and in vivo production of hematopoietic stem and progenitor cells (HSPCs) has the potential to address the short supply of these cells that are used in the treatment of various blood diseases and disorders. Eupalinilide E promotes the expansion of human HSPCs and inhibits subsequent differentiation, leading to increased numbers of clinically useful cells. This natural product represents an important tool to uncover new methods to drive expansion while inhibiting differentiation. However, in the process of examining these effects, which occur through a novel mechanism, the natural product was consumed, which limited additional investigation. To provide renewed and improved access to eupalinilide E, a laboratory synthesis has been developed and is reported herein. The synthetic route can access >400 mg in a single batch, employing reactions conducted on useful scales in a single vessel. Key transformations enabling the approach include a diastereoselective borylative enyne cyclization and a late-stage double allylic C-H oxidation as well as adapted Luche reduction and aluminum-mediated epoxidation reactions to maximize the synthetic efficiency. Retesting of the synthetic eupalinilide E confirmed the compound's ability to expand HSPCs and inhibit differentiation.


Assuntos
Células-Tronco Hematopoéticas/efeitos dos fármacos , Sesquiterpenos/síntese química , Sesquiterpenos/farmacologia , Células-Tronco/efeitos dos fármacos , Alumínio/química , Antígenos CD34/biossíntese , Diferenciação Celular , Proliferação de Células , Células-Tronco Hematopoéticas/metabolismo , Humanos , Oxirredução , Células-Tronco/metabolismo , Estereoisomerismo
20.
J Am Chem Soc ; 137(37): 11864-7, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26331410

RESUMO

Celastroid natural products, triterpenes, have been and continue to be investigated in clinical trials. Celastrol, and for that matter any member of the celastroid family, was prepared for the first time through chemical synthesis starting from 2,3-dimethylbutadiene. A triene cyclization precursor generated in 12 steps underwent a nonbiomimetic polyene cyclization mediated by ferric chloride to generate the generic celastroid pentacyclic core. In the cyclization, engagement of a tetrasubstituted olefin formed adjacent all carbon quaternary centers stereospecifically. With access to the carbocyclic core of the family of natural products, wilforic acid and wilforol A were prepared en route to racemic celastrol.


Assuntos
Produtos Biológicos/síntese química , Triterpenos/síntese química , Produtos Biológicos/química , Técnicas de Química Sintética , Triterpenos Pentacíclicos , Triterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA