Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Physiol Plant ; 175(6): e14111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148230

RESUMO

Salinity stress is one of the major abiotic factors limiting sustainable agriculture. Halotolerant plant growth-promoting bacteria (PGPB) increased salt stress tolerance in plants, but the mechanisms underlying the tolerance are poorly understood. This study investigated the PGP activity of four halotolerant bacteria under salinity stress and the tomato salt-tolerance mechanisms induced by the synergy of these bacteria with the exopolysaccharide (EPS) mauran. All PGPB tested in this study were able to offer a significant improvement of tomato plant biomass under salinity stress; Peribacillus castrilensis N3 being the most efficient one. Tomato plants treated with N3 and the EPS mauran showed greater tolerance to NaCl than the treatment in the absence of EPS and PGPB. The synergy of N3 with mauran confers salt stress tolerance in tomato plants by increasing sodium transporter genes' expression and osmoprotectant content, including soluble sugars, polyols, proline, GABA, phenols and the polyamine putrescine. These osmolytes together with the induction of sodium transporter genes increase the osmotic adjustment capacity to resist water loss and maintain ionic homeostasis. These findings suggest that the synergy of the halotolerant bacterium N3 and the EPS mauran could enhance tomato plant growth by mitigating salt stress and could have great potential as an inductor of salinity tolerance in the agriculture sector.


Assuntos
Solanum lycopersicum , Estresse Salino , Bactérias , Sódio
2.
Biol Chem ; 401(4): 435-446, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31782943

RESUMO

The immune system has a limited capacity to recognize and fight cells that become cancerous and in cancer patients, the immune system has to seek the right balance between cancer rejection and host-immunosupression. The tumor milieu builds a protective shell and tumor cells rapidly accumulate mutations that promote antigen variability and immune-escape. Therapeutic vaccination of cancer is a promising strategy the success of which depends on a powerful activation of the cells of the adaptive immune system specific for tumor-cell detection and killing (e.g. CD4+ and CD8+ T-cells). In the last decades, the search for novel adjuvants that enhance dendritic cell (DC) function and their ability to prime T-cells has flourished and some Toll-like receptor (TLR) agonists have long been known to be valid immune adjuvants. The implementation of TLR-synthetic agonists in clinical studies of cancer vaccination is replacing the initial use of microbial-derived products with some encouraging results. The purpose of this review is to summarize the latest discoveries of TLR-synthetic agonists with adjuvant potential in anti-cancer vaccination.


Assuntos
Vacinas Anticâncer/imunologia , Neoplasias/terapia , Animais , Humanos , Neoplasias/imunologia
4.
Chembiochem ; 20(5): 710-717, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447158

RESUMO

N-(4-Ethylphenyl)-N'-phenylurea (INH14) is a fragment-like compound that inhibits the toll-like receptor 2 (TLR2)-mediated inflammatory activity and other inflammatory pathways (i.e., TLR4, TNF-R and IL-1R). In this study, we determined the molecular target of INH14. Overexpression of proteins that are part of the TLR2 pathway in cells treated with INH14 indicated that the target lay downstream of the complex TAK1/TAB1. Immunoblot assays showed that INH14 decreased IkBα degradation in cells activated by lipopeptide (TLR2 ligand). These data indicated the kinases IKKα and/or IKKß as the targets of INH14, which was confirmed with kinase assays (IC50 IKKα=8.97 µm; IC50 IKKß=3.59 µm). Furthermore, in vivo experiments showed that INH14 decreased TNFα formed after lipopeptide-induced inflammation, and treatment of ovarian cancer cells with INH14 led to a reduction of NF-kB constitutive activity and a reduction in the wound-closing ability of these cells. These results demonstrate that INH14 decreases NF-kB activation through the inhibition of IKKs. Optimization of INH14 could lead to potent inhibitors of IKKs that might be used as antiinflammatory drugs.


Assuntos
Quinase I-kappa B/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Ureia/análogos & derivados , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
5.
Hum Mol Genet ; 21(8): 1877-87, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22246293

RESUMO

Phenylketonuria (PKU) is caused by inherited phenylalanine-hydroxylase (PAH) deficiency and, in many genotypes, it is associated with protein misfolding. The natural cofactor of PAH, tetrahydrobiopterin (BH(4)), can act as a pharmacological chaperone (PC) that rescues enzyme function. However, BH(4) shows limited efficacy in some PKU genotypes and its chemical synthesis is very costly. Taking an integrated drug discovery approach which has not been applied to this target before, we identified alternative PCs for the treatment of PKU. Shape-focused virtual screening of the National Cancer Institute's chemical library identified 84 candidate molecules with potential to bind to the active site of PAH. An in vitro evaluation of these yielded six compounds that restored the enzymatic activity of the unstable PAHV106A variant and increased its stability in cell-based assays against proteolytic degradation. During a 3-day treatment study, two compounds (benzylhydantoin and 6-amino-5-(benzylamino)-uracil) substantially improved the in vivo Phe oxidation and blood Phe concentrations of PKU mice (Pah(enu1)). Notably, benzylhydantoin was twice as effective as tetrahydrobiopterin. In conclusion, we identified two PCs with high in vivo efficacy that may be further developed into a more effective drug treatment of PKU.


Assuntos
Hidantoínas/metabolismo , Fenilalanina Hidroxilase/metabolismo , Fenilcetonúrias/tratamento farmacológico , Uracila/análogos & derivados , Animais , Sítios de Ligação , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Estabilidade Enzimática , Humanos , Hidantoínas/química , Hidantoínas/farmacologia , Hidantoínas/toxicidade , Camundongos , Oxirredução , Fenilalanina/metabolismo , Fenilalanina Hidroxilase/química , Fenilalanina Hidroxilase/deficiência , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/metabolismo , Dobramento de Proteína , Bibliotecas de Moléculas Pequenas , Uracila/química , Uracila/metabolismo , Uracila/farmacologia , Uracila/toxicidade
6.
J Immunol ; 189(9): 4582-91, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23018458

RESUMO

Group B streptococci (GBS; Streptococcus agalactiae) are a major cause of invasive infections in newborn infants and in patients with type 2 diabetes. Both patient groups exhibit peripheral insulin resistance and alterations in polymorphonuclear leukocyte (PML) function. In this investigation, we studied the PML response repertoire to GBS with a focus on TLR signaling and the modulation of this response by insulin in mice and humans. We found that GBS-induced, MyD88-dependent chemokine formation of PML was specifically downmodulated by insulin via insulin receptor-mediated induction of PI3K. PI3K inhibited transcription of chemokine genes on the level of NF-κB activation and binding. Insulin specifically modulated the chemokine response of PML to whole bacteria, but affected neither activation by purified TLR agonists nor antimicrobial properties, such as migration, phagocytosis, bacterial killing, and formation of reactive oxygen species. The targeted modulation of bacteria-induced chemokine formation by insulin via PI3K may form a basis for the development of novel targets of adjunctive sepsis therapy.


Assuntos
Granulócitos/imunologia , Granulócitos/patologia , Insulina/fisiologia , Fosfatidilinositol 3-Quinase/fisiologia , Streptococcus agalactiae/imunologia , Adulto , Animais , Granulócitos/enzimologia , Humanos , Recém-Nascido , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Insulina/farmacologia , Resistência à Insulina/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Artigo em Inglês | MEDLINE | ID: mdl-38929001

RESUMO

Globally, there are around 1.3 billion cigarette consumers, indicating it to be the second highest risk factor for early death and morbidity. Meanwhile, psychological therapy offers tools based on its different models and techniques, which can contribute to smoking cessation. In this context, this study gathers scientific evidence to identify psychological therapies that can be used to reduce cigarette consumption. A systematic review of controlled clinical studies was conducted, implementing the PRISMA methodology. Search queries were performed with terms extracted from MESH (Medical Subject Headings) and DECS (Descriptors in Health Sciences). Subsequently, the search was queried in the scientific databases of Medline/PubMed, Cochrane, Scopus, Science Direct, ProQuest, and PsycNet, with subsequent verification of methodological quality using the Joanna Briggs Institute checklists. The selected documents revealed that cognitive behavioral therapy prevails due to its use and effectiveness in seven publications (25%). The cognitive approach with mindfulness therapy is found in 4 publications (14%), the transtheoretical model with motivational therapy in 4 publications (14%), brief psychological therapy in 3 publications (10%), and the remaining 10 documents (37%) correspond with others. Intervention studies refer to cognitive behavioral therapy as the most used in reducing cigarette consumption; in terms of the duration of abstinence, scientific evidence shows beneficial effects with short-term reduction.


Assuntos
Fumar Cigarros , Abandono do Hábito de Fumar , Humanos , Abandono do Hábito de Fumar/psicologia , Abandono do Hábito de Fumar/métodos , Fumar Cigarros/psicologia , Terapia Cognitivo-Comportamental , Psicoterapia/métodos
8.
EMBO J ; 28(14): 2018-27, 2009 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-19574958

RESUMO

The recognition of bacterial lipoproteins by toll-like receptor (TLR) 2 is pivotal for inflammation initiation and control in many bacterial infections. TLR2-dependent signalling is currently believed to essentially require both adaptor proteins MyD88 (myeloid differentiation primary response gene 88) and Mal/TIRAP (MyD88-adapter-like/TIR-domain-containing adaptor protein). TLR2-dependent, but MyD88-independent responses have not been described yet. We report here on a novel-signalling pathway downstream of TLR2, which does not adhere to the established model. On stimulation of the TLR2/6 heterodimer with diacylated bacterial lipoproteins, Mal directly interacts with the regulatory subunit of phosphoinositide 3-kinase (PI3K), p85alpha, in an inducible fashion. The Mal-p85alpha interaction drives PI3K-dependent phosphorylation of Akt, phosphatidylinositol(3,4,5)P3 (PIP(3)) generation and macrophage polarization. MyD88 is not essential for PI3K activation and Akt phosphorylation; however, cooperates with Mal for PIP(3) formation and accumulation at the leading edge. In contrast to TLR2/6, TLR2/1 does not require Mal or MyD88 for Akt phosphorylation. Hence, Mal specifically connects TLR2/6 to PI3K activation, PIP(3) generation and macrophage polarization.


Assuntos
Macrófagos/imunologia , Glicoproteínas de Membrana/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptores de Interleucina-1/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Animais , Linhagem Celular , Polaridade Celular , Humanos , Macrófagos/citologia , Camundongos , Antígenos de Histocompatibilidade Menor , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 2 Toll-Like/imunologia
9.
Antioxidants (Basel) ; 12(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36671073

RESUMO

Reports show that phytohormone abscisic acid (ABA) is involved in reducing zucchini postharvest chilling injury. During the storage of harvested fruit at low temperatures, chilling injury symptoms were associated with cell damage through the production of reactive oxygen species. In this work, we have studied the importance of different non-enzymatic antioxidants on tolerance to cold stress in zucchini fruit treated with ABA. The application of ABA increases the antioxidant capacity of zucchini fruit during storage through the accumulation of ascorbate, carotenoids and polyphenolic compounds. The quantification of specific phenols was performed by UPLC/MS-MS, observing that exogenous ABA mainly activated the production of flavonoids. The rise in all these non-enzymatic antioxidants due to ABA correlates with a reduction in oxidative stress in treated fruit during cold stress. The results showed that the ABA mainly induces antioxidant metabolism during the first day of exposure to low temperatures, and this response is key to avoiding the occurrence of chilling injury. This work suggests an important protective role of non-enzymatic antioxidants and polyphenolic metabolism in the prevention of chilling injury in zucchini fruit.

10.
PLoS One ; 17(5): e0267860, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507634

RESUMO

Toll-like receptors (TLR) are one of the main constituents of the innate immune system in mammals. They can detect conserved microbial structures (pathogen-associated molecular patterns) and host-derived ligands that are produced during cellular stress and damage (danger-associated molecular patterns) and may then initiate an intracellular signaling cascade leading to the expression of pro-inflammatory cytokines and immediate immune responses. Some TLR (TLR1, 2, 4, 5, and 6) are expressed on the cell surface while others (TLR3, 7, 8 and 9) are present on the surface of endosomes and their ligands require internalization before recognition is possible. Several TLR have also been detected in neurons where they may serve functions that are not related to immune responses. TLR2, 3, and 4 have been described in cortical neurons and, for TLR4, a seizure-promoting role in epilepsies associated with inflammation has been shown. TLR3, 7, and 8 expressed in neurons seem to influence the growth or withdrawal of neurites and robust activation of TLR8 in neurons may even induce neuronal death. The goal of the current study was to investigate the expression of TLR8 in the hippocampus of mice during postnatal development and in adulthood. We focused on three functionally distinct groups of GABAergic interneurons characterized by the expression of the molecular markers parvalbumin, somatostatin, or calretinin, and we applied double fluorescence immunohistochemistry and cell counts to quantify co-expression of TLR8 in the three groups of GABA-interneurons across hippocampal subregions. We found subregion-specific differences in the expression of TLR8 in these interneurons. During postnatal development, TLR8 was detected only in mice older than P5. While only a small fraction of hippocampal calretinin-positive interneurons expressed TLR8, most parvalbumin-positive interneurons in all hippocampal subregions co-expressed TLR8. Somatostatin-positive interneurons co-expressing TLR8 were mainly present in hippocampal sector CA3 but rare in the dentate gyrus and CA1. High expression of TLR8 in parvalbumin-interneurons may contribute to their high vulnerability in human temporal lobe epilepsy.


Assuntos
Parvalbuminas , Receptor 8 Toll-Like/metabolismo , Animais , Calbindina 2/análise , Calbindina 2/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Ligantes , Mamíferos/metabolismo , Camundongos , Parvalbuminas/metabolismo , Somatostatina/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo
11.
Biomolecules ; 11(9)2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34572504

RESUMO

Inflammatory arthritis is a cluster of diseases caused by unregulated activity of the immune system. The lost homeostasis is followed by the immune attack of one's self, what damages healthy cells and tissues and leads to chronic inflammation of various tissues and organs (e.g., joints, lungs, heart, eyes). Different medications to control the excessive immune response are in use, however, drug resistances, flare-reactions and adverse effects to the current therapies are common in the affected patients. Thus, it is essential to broaden the spectrum of alternative treatments and to develop disease-modifying drugs. In the last 20 years, the involvement of the innate immune receptors TLRs in inflammatory arthritis has been widely investigated and targeting either the receptor itself or the proteins in the downstream signalling cascades has emerged as a promising therapeutic strategy. Yet, concerns about the use of pharmacological agents that inhibit TLR activity and may leave the host unprotected against invading pathogens and toxicity issues amid inhibition of downstream kinases crucial in various cellular functions have arisen. This review summarizes the existing knowledge on the role of TLRs in inflammatory arthritis; in addition, the likely druggable related targets and the developed inhibitors, and discusses the pros and cons of their potential clinical use.


Assuntos
Artrite/metabolismo , Inflamação/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Regulação para Baixo , Humanos , Ligantes
12.
Infect Immun ; 77(6): 2474-81, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19332535

RESUMO

Group B streptococcus (GBS), the most frequent single isolate in neonatal sepsis and meningitis, potently activates inflammatory macrophage genes via myeloid differentiation antigen 88 (MyD88). However, events parallel to and downstream of MyD88 that instruct the macrophage response are incompletely understood. In this study, we found that only MyD88, not the Toll-like receptor (TLR) adapter proteins MAL/TIRAP, TRIF, and TRAM, essentially mediates the cytokine (tumor necrosis factor [TNF] and interleukin-6) and chemokine (RANTES) responses to whole GBS organisms, although MAL, TRIF, and TRAM have been shown to mediate the responses to substructures in other gram-positive and gram-negative bacteria. GBS-induced, MyD88-dependent phosphorylation of the mitogen-activated protein kinase p38 activated the transcription factor AP-1 and early growth response factor 1 (Egr-1) but not NF-kappaB. Furthermore, phosphorylation of Ets-like molecule 1 (Elk-1) was mediated by p38. However, in contrast to Egr-1 and AP-1, Elk-1 was dispensable for transcriptional activation of TNF by GBS organisms. Studies of macrophages from Elk-1-deficient mice revealed that Elk-1 was furthermore nonessential for the TNF responses to purified TLR2 and TLR4 agonists, which was in notable contrast to what was revealed in studies employing in vitro expression systems. In conclusion, MyD88, p38, and Egr-1, but not Elk-1, essentially mediate the inflammatory cytokine response to GBS organisms.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/microbiologia , Streptococcus agalactiae/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Fator 88 de Diferenciação Mieloide/metabolismo , Fator de Transcrição AP-1/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo
13.
Rev Salud Publica (Bogota) ; 20(6): 699-706, 2018 11 01.
Artigo em Espanhol | MEDLINE | ID: mdl-33206892

RESUMO

OBJECTIVE: To characterize maternal deaths in the department of Santander, Colombia, and the delays that contributed to these deaths during the period 2012-2015, through a systematic review of health care, in order to offer an input that allows proposing actions that contribute to reduce these fatal outcomes. MATERIALS AND METHODS: Descriptive, retrospective, cross-sectional study that determines the characteristics of maternal mortality in pregnant or postpartum women who were administered complete analysis units and whose death was not caused by external or violent causes. RESULTS: The most frequent delay in the 49 cases of maternal deaths was type IV, which refers to the delay in receiving adequate and timely medical treatment (87.8%), mainly due to deficiencies in promotion and prevention strategies (63.2%). The majority of the deaths were avoidable (61.2%) in the puerperium (84%), and in users of the subsidized insurance scheme (57.1%). CONCLUSIONS: Although 98% of mothers were affiliated to the health system (subsidized, contributory, special or exceptional schemes), it was possible to demonstrate that women who were affiliated to the subsidized regime showed a greater frequency of the event, which reflects that there are important opportunities for improvement in the care provided to pregnant women in this type of scheme.


OBJETIVO: Caracterizar las muertes maternas en el departamento de Santander y las demoras que contribuyeron a dichas muertes, durante los años 2012 a 2015, mediante los análisis de las atenciones en salud, con el fin de ofrecer un insumo que permita plantear acciones para disminuir desenlaces fatales. MATERIALES Y MÉTODOS: Estudio descriptivo, retrospectivo, de corte transversal, en el cual se determinaron las características de la mortalidad materna en las mujeres gestantes o en puerperio a quienes se les realizaron unidades de análisis completas y que no fueron por causas externas o violentas. RESULTADOS: La demora que más se presentó en los 49 casos de muertes maternas fue la tipo IV relacionada con recibir un tratamiento médico adecuado y oportuno (87,8%), debido principalmente a deficiencias en los servicios de promoción y prevención (63,2%). La mayor parte de las muertes fueron evitables (61,2%), en el puerperio (84%) y en usuarias del régimen subsidiado (57,1%). CONCLUSIONES: Las mujeres afiliadas al régimen subsidiado presentaron mayor frecuencia del evento, lo cual refleja que existen importantes oportunidades de mejora en la atención que se brinda a las gestantes en el régimen subsidiado.


Assuntos
Mortalidade Materna , Adulto , Colômbia , Estudos Transversais , Diagnóstico Tardio/economia , Diagnóstico Tardio/estatística & dados numéricos , Atenção à Saúde/economia , Atenção à Saúde/estatística & dados numéricos , Feminino , Acessibilidade aos Serviços de Saúde/economia , Acessibilidade aos Serviços de Saúde/estatística & dados numéricos , Humanos , Seguro Saúde/estatística & dados numéricos , Serviços de Saúde Materna/economia , Serviços de Saúde Materna/estatística & dados numéricos , Gravidez , Complicações na Gravidez/economia , Complicações na Gravidez/mortalidade , Complicações na Gravidez/prevenção & controle , Cuidado Pré-Natal/estatística & dados numéricos , Transtornos Puerperais/economia , Transtornos Puerperais/mortalidade , Transtornos Puerperais/prevenção & controle , Estudos Retrospectivos , Determinantes Sociais da Saúde , Tempo para o Tratamento/economia , Tempo para o Tratamento/estatística & dados numéricos
15.
Proteins ; 67(1): 219-31, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17206710

RESUMO

The proteins Kid and Kis are the toxin and antitoxin, respectively, encoded by the parD operon of Escherichia coli plasmid R1. Kis prevents the inhibition of E. coli cell growth caused by the RNA cleavage activity of Kid. Overproduction of MazE, the chromosome-encoded homologue of Kis, has been demonstrated to neutralize Kid toxicity to a certain extent in the absence of native Kis. Here, we show that a high structural similarity exists between these antitoxins, using NMR spectroscopy. We report about the interactions between Kid and Kis that are responsible for neutralization of Kid toxicity and enhance autoregulation of parD transcription. Native macromolecular mass spectrometry data demonstrate that Kid and Kis form multiple complexes. At Kis:Kid ratios equal to or exceeding 1:1, as found in vivo in a plasmid-containing cell, various complexes are present, ranging from Kid(2)-Kis(2) tetramer up to Kis(2)-Kid(2)-Kis(2)-Kid(2)-Kis(2) decamer. When Kid is in excess of Kis, corresponding to an in vivo situation immediately after loss of the plasmid, the Kid(2)-Kis(2)-Kid(2) heterohexamer is the most abundant species. NMR chemical shift and intensity perturbations in the (1)H (15)N HSQC spectra of Kid and Kis, observed when titrating the partner protein, show that the interaction sites of Kid and Kis resemble those within the previously reported MazF(2)-MazE(2)-MazF(2) complex. Furthermore, we demonstrate that Kid(2)-MazE(2) tetramers can be formed via weak interactions involving a limited part of the Kis-binding residues of Kid. The functional roles of the identified Kid-Kis and Kid-MazE interaction sites and complexes in toxin neutralization and repression of transcription are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Antitoxinas , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Ressonância Magnética Nuclear Biomolecular , Óperon , Plasmídeos/genética , Relação Estrutura-Atividade
16.
J Endotoxin Res ; 12(5): 307-12, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17059694

RESUMO

Streptococcus pneumoniae and Streptococcus agalactiae cause distinct infectious diseases in small children. Similarly, these bacteria elicit very different host-cell responses in vitro. Inactivated S. agalactiae by far exceeds S. pneumoniae in the activation of inflammatory cytokines and upstream signaling intermediates such as the MAP kinase JNK. The inflammatory response to both Streptococcus spp. is mediated by MyD88, an essential adapter protein of Toll-like receptors (TLRs), although the specific TLRs that are involved have not been fully resolved. Furthermore, during logarithmic growth, S. pneumoniae releases pneumolysin that interacts with TLR4 whereas S. agalactiae releases diacylated molecules that interact with TLR2/6. Interaction of these soluble bacterial products with their cognate TLRs is critical for limiting bacterial dissemination and and systemic inflammation in mice. This might be due, in part, to TLR-mediated apoptosis induced by these factors. In conclusion related streptococcal species induce specific events in TLR-mediated signal transduction. Comparative analysis of the host-cell response to these bacteria reveals molecules such as JNK as valuable targets for adjunctive sepsis therapy.


Assuntos
Imunidade Inata , Streptococcus agalactiae/imunologia , Streptococcus pneumoniae/imunologia , Receptores Toll-Like/imunologia , Receptores Toll-Like/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/imunologia , Apoptose/fisiologia , Proteínas de Bactérias/metabolismo , Humanos , Recém-Nascido , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Ligantes , Lipopolissacarídeos/imunologia , Camundongos , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Streptococcus agalactiae/crescimento & desenvolvimento , Streptococcus agalactiae/metabolismo , Streptococcus pneumoniae/crescimento & desenvolvimento , Streptococcus pneumoniae/metabolismo , Estreptolisinas/metabolismo , Ácidos Teicoicos/imunologia
17.
Structure ; 10(10): 1425-33, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12377128

RESUMO

We have determined the structure of Kid toxin protein from E. coli plasmid R1 involved in stable plasmid inheritance by postsegregational killing of plasmid-less daughter cells. Kid forms a two-component system with its antagonist, Kis antitoxin. Our 1.4 A crystal structure of Kid reveals a 2-fold symmetric dimer that closely resembles the DNA gyrase-inhibitory toxin protein CcdB from E. coli F plasmid despite the lack of any notable sequence similarity. Analysis of nontoxic mutants of Kid suggests a target interaction interface associated with toxicity that is in marked contrast to that proposed for CcdB. A possible region for interaction of Kid with the antitoxin is proposed that overlaps with the target binding site and may explain the mode of antitoxin action.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/farmacologia , Escherichia coli/química , Plasmídeos , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
18.
Nefrologia ; 36(6): 616-630, 2016.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-27595514

RESUMO

INTRODUCTION: Improved outcome and longer life-expectancy in patients with cystinosis, and disease complexity itself, justify planning a guided-transition of affected patients from Pediatrics to adult medicine. The aims of the process are to guarantee the continuum of care and patient empowerment, moving from guardian-care to self-care. METHODS: review of articles, expert opinion and anonymous surveys of patients, relatives and patient advocacy groups. RESULTS: elaboration a new document to support and coordinate the transition of patients with cystinosis providing specific proposals in a variety of medical fields, and adherence promotion. Nephrologists play a key role in transition due the fact that most cystinotic patients suffer severe chronic kidney disease, and need kidney transplantation before adulthood. CONCLUSION: we present a document providing recommendations and suggesting a chronogram to help the process of transition of adolescents and young adults with cystinosis in our area.


Assuntos
Cistinose/terapia , Transição para Assistência do Adulto , Adolescente , Adulto , Criança , Humanos , Transplante de Rim , Pediatria , Insuficiência Renal Crônica/terapia , Autocuidado , Adulto Jovem
19.
FEBS Lett ; 567(2-3): 316-20, 2004 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-15178344

RESUMO

The mazEF (chpA) toxin-antitoxin system of Escherichia coli is involved in the cell response to nutritional and antibiotic stresses as well as in bacterial-programmed cell death. Valuable information on the MazF toxin was derived from the determination of the crystal structure of the MazE/MazF complex and from in vivo data, suggesting that MazF promoted ribosome-dependent cleavage of messenger RNA. However, it was concluded from recent in vitro analyses using a MazF-(His6) fusion protein that MazF was an endoribonuclease that cleaved messenger RNA specifically at 5'-ACA-3' sites situated in single-stranded regions. In contrast, our work reported here shows that native MazF protein cleaves RNA at the 5' side of residue A in 5'-NAC-3' sequences (where N is preferentially U or A). MazF-dependent cleavage occurred at target sequences situated either in single- or double-stranded RNA regions. These activities were neutralized by a His6-MazE antitoxin. Although essentially consistent with previous in vivo reports on the substrate specificity of MazF, our results strongly suggest that the endoribonuclease activity of MazF may be modulated by additional factors to cleave messenger and other cellular RNAs.


Assuntos
Toxinas Bacterianas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endorribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , RNA Bacteriano/metabolismo , Animais , Antitoxinas/metabolismo , Toxinas Bacterianas/química , Sequência de Bases , Sítios de Ligação , Dicroísmo Circular , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Estrutura Quaternária de Proteína , RNA Bacteriano/química , Coelhos , Reticulócitos/metabolismo , Especificidade por Substrato , Ultracentrifugação
20.
FEMS Microbiol Lett ; 206(1): 115-9, 2002 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-11786266

RESUMO

We report the identification and genetic analysis of mutants in the antitoxin of the parD (kis, kid) killer system of plasmid R1. Missense mutants placed at codons 10, 11, 12 and 18 maintained the antitoxin activity of Kis, but not the ability of this protein to co-regulate the parD system together with the Kid toxin. Deletion of the last 33 amino acids of Kis inactivated the antitoxin activity of the protein and reduced substantially, but not completely, its regulatory activity. These results define two functional regions in Kis: an amino-terminal region which is specifically involved in regulation, and a carboxy-terminal region of the protein, which is important both for its regulatory and antitoxin activities.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli , Plasmídeos/genética , Fatores R/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Mutação , Óperon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA