Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 155(11): 115101, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34551527

RESUMO

The computer-aided investigation of protein folding has greatly benefited from coarse-grained models, that is, simplified representations at a resolution level lower than atomistic, providing access to qualitative and quantitative details of the folding process that would be hardly attainable, via all-atom descriptions, for medium to long molecules. Nonetheless, the effectiveness of low-resolution models is itself hampered by the presence, in a small but significant number of proteins, of nontrivial topological self-entanglements. Features such as native state knots or slipknots introduce conformational bottlenecks, affecting the probability to fold into the correct conformation; this limitation is particularly severe in the context of coarse-grained models. In this work, we tackle the relationship between folding probability, protein folding pathway, and protein topology in a set of proteins with a nontrivial degree of topological complexity. To avoid or mitigate the risk of incurring in kinetic traps, we make use of the elastic folder model, a coarse-grained model based on angular potentials optimized toward successful folding via a genetic procedure. This light-weight representation allows us to estimate in silico folding probabilities, which we find to anti-correlate with a measure of topological complexity as well as to correlate remarkably well with experimental measurements of the folding rate. These results strengthen the hypothesis that the topological complexity of the native state decreases the folding probability and that the force-field optimization mimics the evolutionary process these proteins have undergone to avoid kinetic traps.


Assuntos
Modelos Químicos , Dobramento de Proteína , Proteínas , Cinética , Conformação Proteica , Proteínas/química
2.
Biomedicines ; 12(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39061955

RESUMO

We hypothesized that via extracellular vesicles (EVs), chronic lymphocytic leukemia (CLL) cells turn endothelial cells into CLL-supportive cells. To test this, we treated vein-derived (HUVECs) and artery-derived (HAOECs) endothelial cells with EVs isolated from the peripheral blood of 45 treatment-naïve patients. Endothelial cells took up CLL-EVs in a dose- and time-dependent manner. To test whether CLL-EVs turn endothelial cells into IL-6-producing cells, we exposed them to CLL-EVs and found a 50% increase in IL-6 levels. Subsequently, we filtered out the endothelial cells and added CLL cells to this IL-6-enriched medium. After 15 min, STAT3 became phosphorylated, and there was a 40% decrease in apoptosis rate, indicating that IL-6 activated the STAT3-dependent anti-apoptotic pathway. Phospho-proteomics analysis of CLL-EV-exposed endothelial cells revealed 23 phospho-proteins that were upregulated, and network analysis unraveled the central role of phospho-ß-catenin. We transfected HUVECs with a ß-catenin-containing plasmid and found by ELISA a 30% increase in the levels of IL-6 in the culture medium. By chromatin immunoprecipitation assay, we observed an increased binding of three transcription factors to the IL-6 promoter. Importantly, patients with CLL possess significantly higher levels of peripheral blood IL-6 compared to normal individuals, suggesting that the inducers of endothelial IL-6 are the neoplastic EVs derived from the CLL cells versus those of healthy people. Taken together, we found that CLL cells communicate with endothelial cells through EVs that they release. Once they are taken up by endothelial cells, they turn them into IL-6-producing cells.

3.
Sci Rep ; 12(1): 16415, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180493

RESUMO

It is now well accepted that cancer cells change their microenvironment from normal to tumor-supportive state to provide sustained tumor growth, metastasis and drug resistance. These processes are partially carried out by exosomes, nano-sized vesicles secreted from cells, shuttled from donor to recipient cells containing a cargo of nucleic acids, proteins and lipids. By transferring biologically active molecules, cancer-derived exosomes may transform microenvironmental cells to become tumor supportive. Telomerase activity is regarded as a hallmark of cancer. We have recently shown that the transcript of human telomerase reverse transcriptase (hTERT), is packaged in cancer cells derived- exosomes. Following the engulfment of the hTERT transcript into fibroblasts, it is translated into a fully active enzyme [after assembly with its RNA component (hTERC) subunit]. Telomerase activity in the recipient, otherwise telomerase negative cells, provides them with a survival advantage. Here we show that exosomal telomerase might play a role in modifying normal fibroblasts into cancer associated fibroblasts (CAFs) by upregulating [Formula: see text]SMA and Vimentin, two CAF markers. We also show that telomerase activity changes the transcriptome of microRNA in these fibroblasts. By ectopically expressing microRNA 342, one of the top identified microRNAs, we show that it may mediate the proliferative phenotype that these cells acquire upon taking-up exosomal hTERT, providing them with a survival advantage.


Assuntos
Fibroblastos Associados a Câncer , Exossomos , MicroRNAs , Neoplasias , Telomerase , Fibroblastos Associados a Câncer/metabolismo , Exossomos/genética , Exossomos/metabolismo , Fibroblastos/metabolismo , Humanos , Lipídeos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/patologia , Telomerase/genética , Telomerase/metabolismo , Transcriptoma , Microambiente Tumoral/genética , Vimentina/metabolismo
4.
Nat Commun ; 13(1): 6474, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309502

RESUMO

The identification of the protospacer adjacent motif (PAM) sequences of Cas9 nucleases is crucial for their exploitation in genome editing. Here we develop a computational pipeline that was used to interrogate a massively expanded dataset of metagenome and virome assemblies for accurate and comprehensive PAM predictions. This procedure allows the identification and isolation of sequence-tailored Cas9 nucleases by using the target sequence as bait. As proof of concept, starting from the disease-causing mutation P23H in the RHO gene, we find, isolate and experimentally validate a Cas9 which uses the mutated sequence as PAM. Our PAM prediction pipeline will be instrumental to generate a Cas9 nuclease repertoire responding to any PAM requirement.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , RNA Guia de Cinetoplastídeos/genética , Metagenoma , Edição de Genes/métodos , Endonucleases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA