Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 26(5): 5118-5125, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29529719

RESUMO

Colloidal media with well-defined optical properties have been widely used as model systems in many fundamental and applied studies of light-matter interactions in complex media. Recent progress in the field of engineered nanoscale optical materials with fundamentally new physical properties opens new opportunities for tailoring the properties of colloids. In this work, we experimentally demonstrate the evolution of the optical vortex beams of different topological charges propagating in engineered nano-colloidal suspension of negative polarizability with saturable nonlinearities. Due to the high power of the incident beam, the modulation instability leads to an exponential growth of weak perturbations and thus splits the original vortex beam into a necklace beam consisting of several bright spots. At a fixed power, the number of observed bright spots is intrinsically determined by the topological charge of the incident beam and agrees well with the predictions of our linear stability analysis and numerical simulations. Besides contributing to the fundamental science of light-matter interactions in engineered soft-matter media, this work opens new opportunities for dynamic optical manipulation and transmission of light through scattering media as well as formation of complex optical patterns and light filamentation in naturally existing colloids such as fog and clouds.

2.
Opt Lett ; 40(24): 5714-7, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26670494

RESUMO

Modulational instability is a phenomenon that reveals itself as the exponential growth of weak perturbations in the presence of an intense pump beam propagating in a nonlinear medium. It plays a key role in such nonlinear optical processes as supercontinuum generation, light filamentation, rogue waves, and ring (or necklace) beam formation. To date, a majority of studies of these phenomena have focused on light-matter interactions in self-focusing Kerr media existing in nature. However, a large and tunable nonlinear response of a colloidal suspension can be tailored at will by judiciously engineering the optical polarizability. Here, we analytically and numerically show the possibility of necklace beam generation originating from spatial modulational instability of vortex beams in engineered soft-matter nonlinear media with different types of exponential nonlinearity.

3.
Sci Rep ; 7(1): 11709, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916768

RESUMO

Recently, we have predicted that the modulation instability of optical vortex solitons propagating in nonlinear colloidal suspensions with exponential saturable nonlinearity leads to formation of necklace beams (NBs). Here, we investigate the dynamics of NB formation and propagation, and demonstrate a variety of optical beam structures emerging upon vortex beam propagation in engineered nonlinear colloidal medium. In particular, we show that the distance at which the NB is formed depends on the input power of the vortex beam. Moreover, we show that the NB trajectories are not necessarily tangent to the initial vortex ring, and that their velocities have components stemming both from the beam diffraction and from the beam orbital angular momentum. We also demonstrate the generation of elliptical rotating solitons and analyze the influence of losses on their propagation. Finally, we investigate the conservation of the orbital angular momentum in necklace and elliptical rotating beams. Our studies, performed in ideal lossless media and in realistic colloidal suspensions with losses, provide a detailed description of NB dynamics, and may be useful in analysis of light propagation in highly scattering colloids and biological samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA