Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36985704

RESUMO

Rhenium (Re) is widely used in the diagnosis and treatment of cancer due to its unique physical and chemical properties. Re has more valence electrons in its outer shell, allowing it to exist in a variety of oxidation states and to form different geometric configurations with many different ligands. The luminescence properties, lipophilicity, and cytotoxicity of complexes can be adjusted by changing the ligand of Re. This article mainly reviews the development of radionuclide 188Re in radiotherapy and some innovative applications of Re as well as the different therapeutic approaches and imaging techniques used in cancer therapy. In addition, the current application and future challenges and opportunities of Re are also discussed.


Assuntos
Neoplasias , Rênio , Humanos , Rênio/uso terapêutico , Rênio/química , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Luminescência , Radioisótopos/uso terapêutico , Oxirredução , Ligantes
2.
J Inorg Biochem ; 244: 112205, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37028114

RESUMO

Palladium(II) (PdII) complexes are among the most promising anticancer compounds. Both 2`-benzoylpyridine thiosemicarbazone (BpT) and saccharinate (Sac) are efficient metal chelators with potent anticancer activity. To explore a more effective new anticancer drug, we synthesized a series of Sac and BpT-containing PdII complexes coordinated with thiosemicarbazone (TSC)-derived ligands, and characterized them through nuclear magnetic resonance (NMR), Fourier transformed infrared spectroscopy (FT-IR), elemental analysis, ultraviolet-visible spectroscopy (UV-Vis) and thermogravimetric analysis (TGA). Each target complex was composed of PdII, BpT, and one or two Sac molecules. Both the in vitro and in vivo anti-growth effects of those ligands and the obtained PdII complexes were investigated in the human lung adenocarcinoma cell lines A549 and Spc-A1. The coordination of PdII with the TSC-derivatives and Sac resulted in clearly greater anticancer activity than single ligands. These compounds were demonstrated to be safe for 293 T normal human kidney epithelial cells. The introduction of Sac into the TSC-derived PdII complex significantly enhanced anti-growth effects, and induced apoptosis of human lung cancer cells in vitro and in vivo in a dose dependent manner. Moreover, the PdII complex containing two Sac molecules showed the most promising therapeutic effects, thereby confirming that Sac increases the cancer therapeutic efficacy of PdII complexes and providing a new strategy for exploring anticancer drugs for potential clinical treatment.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Tiossemicarbazonas , Humanos , Linhagem Celular Tumoral , Paládio/farmacologia , Paládio/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA