Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Exp Physiol ; 106(9): 1897-1908, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34197674

RESUMO

NEW FINDINGS: What is the topic of this review? This narrative review explores past and recent findings on the mechanical determinants of energy cost during human locomotion, obtained by using a mechanical approach based on König's theorem (Fenn's approach). What advances does it highlight? Developments in analytical methods and their applications allow a better understanding of the mechanical-bioenergetic interaction. Recent advances include the determination of 'frictional' internal work; the association between tendon work and apparent efficiency; a better understanding of the role of energy recovery and internal work in pathological gait (amputees, stroke and obesity); and a comprehensive analysis of human locomotion in (simulated) low gravity conditions. ABSTRACT: During locomotion, muscles use metabolic energy to produce mechanical work (in a more or less efficient way), and energetics and mechanics can be considered as two sides of the same coin, the latter being investigated to understand the former. A mechanical approach based on König's theorem (Fenn's approach) has proved to be a useful tool to elucidate the determinants of the energy cost of locomotion (e.g., the pendulum-like model of walking and the bouncing model of running) and has resulted in many advances in this field. During the past 60 years, this approach has been refined and applied to explore the determinants of energy cost and efficiency in a variety of conditions (e.g., low gravity, unsteady speed). This narrative review aims to summarize current knowledge of the role that mechanical work has played in our understanding of energy cost to date, and to underline how recent developments in analytical methods and their applications in specific locomotion modalities (on a gradient, at low gravity and in unsteady conditions) and in pathological gaits (asymmetric gait pathologies, obese subjects and in the elderly) could continue to push this understanding further. The recent in vivo quantification of new aspects that should be included in the assessment of mechanical work (e.g., frictional internal work and elastic contribution) deserves future research that would improve our knowledge of the mechanical-bioenergetic interaction during human locomotion, as well as in sport science and space exploration.


Assuntos
Corrida , Caminhada , Idoso , Fenômenos Biomecânicos , Metabolismo Energético/fisiologia , Marcha/fisiologia , Humanos , Locomoção/fisiologia , Corrida/fisiologia , Caminhada/fisiologia
2.
Acta Bioeng Biomech ; 23(3): 125-131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34978307

RESUMO

PURPOSE: The aim of the study was to analyze the general kinematics of the cycle, leveling of the center of mass and inverted pendulum model in school-age children when they walk at three different auto-selected speeds. METHODS: The kinematics of walking cycle, angular actions that contribute to reducing the vertical displacement of body center of mass (pelvis, hip, knee and ankle) and pendulumlike determining variables (mechanical work, pendulum-like recovery and congruity percentage), were analyzed in children for three different self-selected speeds. Differences for each variable with the speed were tested by ANOVA with Bonferroni post-hoc analysis. Omega squared (ω²) was calculated for the values of the effect sizes. RESULTS: None of the angular variables associated with the leveling of the vertical trajectory of body center of mass changed. Likewise, recovery and congruity percentage presented values similar to those obtained in previous studies and did not show significant changes with the speeds. CONCLUSIONS: Nevertheless, changes in horizontal mechanical work and cycle phases, indicate that at some point during the cycle the mechanical energy transfer may have been affected for speed changes. Our results warn about the implication that small changes in the speed during functional evaluations of gait in children may have.


Assuntos
Velocidade de Caminhada , Caminhada , Fenômenos Biomecânicos , Criança , Marcha , Humanos , Articulação do Joelho
3.
Hum Mov Sci ; 66: 521-528, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31220691

RESUMO

MAIN: To analyze spatiotemporal gait parameters and the body center of mass (CoM) energy transduction at self-selected speed walking in a group of older patients with stroke. METHODS: A cross-sectional study, fifteen subjects with 4.06 years post ̵stroke hemiparesis (eleven men and four women) and fifteen healthy subjects (four men and eleven women) participate in this study. Pendulum-like determining variables; Recovery (R) and Congruity percentage (%Cong) were analyzed in addition to immediate pendular re-conversion (Rint) during the phases in which the gait cycle is usually divided in clinical evaluations. RESULTS: Healthy subjects walked faster that stroke group (p = 0.001). %Cong was significantly higher in post-stroke respect to healthy subjects (p = 0.05). Rint showed significant differences between the groups for all phases (p = 0.05). The relation between speed and R was confirmed, for healthy (r = 0.67, p = 0.006) and post-stroke subjects (r = 0.851, p = 0.001), %Cong y Rint (r = -0.79, p = 0.001), (r = -0.93, p = 0.001) and periods of double support (r = -0.76, p = 0.001), (r = 0.69, p = 0.004) respectively. CONCLUSION: Alteration of pendular mechanism in subjects post-stroke is associated mainly with energy transduction; mechanical energy recovered during double support phases in healthy and post-stroke subjects follows a different trend, in post-stroke subjects, a longer duration of the double support is associated with less energy loss.

4.
PeerJ ; 7: e7748, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31579616

RESUMO

BACKGROUND: The mechanics and energetics of spider locomotion have not been deeply investigated, despite their importance in the life of a spider. For example, the reproductive success of males of several species is dependent upon their ability to move from one area to another. The aim of this work was to describe gait patterns and analyze the gait parameters of Eupalaestrus weijenberghi (Araneae, Theraphosidae) in order to investigate the mechanics of their locomotion and the mechanisms by which they conserve energy while traversing different inclinations and surfaces. METHODS: Tarantulas were collected and marked for kinematic analysis. Free displacements, both level and on an incline, were recorded using glass and Teflon as experimental surfaces. Body segments of the experimental animals were measured, weighed, and their center of mass was experimentally determined. Through reconstruction of the trajectories of the body segments, we were able to estimate their internal and external mechanical work and analyze their gait patterns. RESULTS: Spiders mainly employed a walk-trot gait. Significant differences between the first two pairs and the second two pairs were detected. No significant differences were detected regarding the different planes or surfaces with respect to duty factor, time lags, stride frequency, and stride length. However, postural changes were observed on slippery surfaces. The mechanical work required for traversing a level plane was lower than expected. In all conditions, the external work, and within it the vertical work, accounted for almost all of the total mechanical work. The internal work was extremely low and did not rise as the gradient increased. DISCUSSION: Our results support the idea of considering the eight limbs functionally divided into two quadrupeds in series. The anterior was composed of the first two pairs of limbs, which have an explorative and steering purpose and the posterior was more involved in supporting the weight of the body. The mechanical work to move one unit of mass a unit distance is almost constant among the different species tested. However, spiders showed lower values than expected. Minimizing the mechanical work could help to limit metabolic energy expenditure that, in small animals, is relatively very high. However, energy recovery due to inverted pendulum mechanics only accounts for only a small fraction of the energy saved. Adhesive setae present in the tarsal, scopulae, and claw tufts could contribute in different ways during different moments of the step cycle, compensating for part of the energetic cost on gradients which could also help to maintain constant gait parameters.

5.
Rev. Fac. Med. (Bogotá) ; 66(1): 59-68, ene.-mar. 2018. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-896824

RESUMO

Resumen Introducción. Los pacientes con amputación de miembros inferiores presentan marcadas asimetrías en la marcha, las cuales pueden aumentar cuando no se cumple con un adecuado proceso de rehabilitación, comprometiendo los objetivos fundamentales de la marcha e incrementando factores de riesgo. Objetivo. Analizar el grado de aprovechamiento de energía mecánica, la estabilidad dinámica y las variables cinemáticas de interés clínico en la marcha de un paciente con amputación transfemoral que no realizó el proceso de rehabilitación. Materiales y métodos. Con base en una reconstrucción 3D, se cuantificaron valores angulares para cadera, rodilla y tobillo y se estimó el intercambio de energía mecánica y la estabilidad dinámica en tres velocidades de marcha diferentes. Resultados. Se observaron variaciones en los parámetros espacio-temporales con el cambio de la velocidad que no son consistentes con los encontrados en otros estudios de amputados. Los valores angulares, principalmente a nivel de rodilla y tobillo, presentan asimetrías que se pueden asociar con una disminución en el aprovechamiento de energía mecánica mientras aumenta la estabilidad en diferentes velocidades. Conclusión. El uso de prótesis en las condiciones en las que fue realizada la evaluación compromete la recuperación de energía mecánica en la marcha del paciente.


Abstract Introduction: Patients with lower limb amputation have marked gait asymmetries which may increase when an adequate rehabilitation process is not provided, compromising the fundamental objectives of gait and increasing risk factors. Objective: To analyze the degree of use of mechanical energy, dynamic stability and kinematic variables of clinical interest in the gait of a patient with transfemoral amputation who did not undergo a rehabilitation process. Materials and methods: Based on a 3D reconstruction, angular values for hip, knee and ankle were quantified and the mechanical energy exchange and dynamic stability were estimated at three different gait speeds. Results: Variations in spatiotemporal parameters were observed along with changes in speed, which are not consistent with the results obtained in other studies in amputees. The angular values, mainly of the knee and ankle, show asymmetries that can be associated with a decrease in the use of mechanical energy while increasing stability at different speeds. Conclusion: The use of prosthesis under the conditions in which the evaluation was performed compromises the recovery of the mechanical energy in the patient's gait.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA