Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Am J Med Genet A ; 194(2): 328-336, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37846940

RESUMO

Mesomelic skeletal dysplasia is a heterogeneous group of skeletal disorders that has grown since the molecular basis of these conditions is in the process of research and discovery. Here, we report a Brazilian family with eight affected members over three generations with a phenotype similar to mesomelic Kantaputra dysplasia. This family presents marked shortening of the upper limbs with hypotrophy of the lower limbs and clubfeet without synostosis. Array-based CNV analysis and exome sequencing of four family members failed to show any region or gene candidate. Interestingly, males were more severely affected than females in this family, suggesting that gender differences could play a role in the phenotypic expressivity of this condition.


Assuntos
Disgenesia Gonadal , Osteocondrodisplasias , Masculino , Feminino , Humanos , Fatores Sexuais , Osteocondrodisplasias/genética , Família , Fenótipo
2.
BMC Biol ; 21(1): 77, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37038111

RESUMO

BACKGROUND: Predation pressure and herbivory exert cascading effects on coral reef health and stability. However, the extent of these cascading effects can vary considerably across space and time. This variability is likely a result of the complex interactions between coral reefs' biotic and abiotic dimensions. A major biological component that has been poorly integrated into the reefs' trophic studies is the microbial community, despite its role in coral death and bleaching susceptibility. Viruses that infect bacteria can control microbial densities and may positively affect coral health by controlling microbialization. We hypothesize that viral predation of bacteria has analogous effects to the top-down pressure of macroorganisms on the trophic structure and reef health. RESULTS: Here, we investigated the relationships between live coral cover and viruses, bacteria, benthic algae, fish biomass, and water chemistry in 110 reefs spanning inhabited and uninhabited islands and atolls across the Pacific Ocean. Statistical learning showed that the abundance of turf algae, viruses, and bacteria, in that order, were the variables best predicting the variance in coral cover. While fish biomass was not a strong predictor of coral cover, the relationship between fish and corals became apparent when analyzed in the context of viral predation: high coral cover (> 50%) occurred on reefs with a combination of high predator fish biomass (sum of sharks and piscivores > 200 g m-2) and high virus-to-bacteria ratios (> 10), an indicator of viral predation pressure. However, these relationships were non-linear, with reefs at the higher and lower ends of the coral cover continuum displaying a narrow combination of abiotic and biotic variables, while reefs at intermediate coral cover showed a wider range of parameter combinations. CONCLUSIONS: The results presented here support the hypothesis that viral predation of bacteria is associated with high coral cover and, thus, coral health and stability. We propose that combined predation pressures from fishes and viruses control energy fluxes, inhibiting the detrimental accumulation of ecosystem energy in the microbial food web.


Assuntos
Antozoários , Bactérias , Recifes de Corais , Peixes , Cadeia Alimentar , Comportamento Predatório , Antozoários/microbiologia , Antozoários/virologia , Animais , Peixes/fisiologia , Oceano Pacífico , Biomassa , Ilhas , Bactérias/virologia , Água do Mar/química , Atividades Humanas , Estatísticas não Paramétricas
3.
Proc Natl Acad Sci U S A ; 117(24): 13588-13595, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482859

RESUMO

Viruses, microbes, and host macroorganisms form ecological units called holobionts. Here, a combination of metagenomic sequencing, metabolomic profiling, and epifluorescence microscopy was used to investigate how the different components of the holobiont including bacteria, viruses, and their associated metabolites mediate ecological interactions between corals and turf algae. The data demonstrate that there was a microbial assemblage unique to the coral-turf algae interface displaying higher microbial abundances and larger microbial cells. This was consistent with previous studies showing that turf algae exudates feed interface and coral-associated microbial communities, often at the detriment of the coral. Further supporting this hypothesis, when the metabolites were assigned a nominal oxidation state of carbon (NOSC), we found that the turf algal metabolites were significantly more reduced (i.e., have higher potential energy) compared to the corals and interfaces. The algae feeding hypothesis was further supported when the ecological outcomes of interactions (e.g., whether coral was winning or losing) were considered. For example, coral holobionts losing the competition with turf algae had higher Bacteroidetes-to-Firmicutes ratios and an elevated abundance of genes involved in bacterial growth and division. These changes were similar to trends observed in the obese human gut microbiome, where overfeeding of the microbiome creates a dysbiosis detrimental to the long-term health of the metazoan host. Together these results show that there are specific biogeochemical changes at coral-turf algal interfaces that predict the competitive outcomes between holobionts and are consistent with algal exudates feeding coral-associated microbes.


Assuntos
Antozoários/metabolismo , Clorófitas/metabolismo , Animais , Antozoários/química , Antozoários/microbiologia , Antozoários/parasitologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Clorófitas/química , Recifes de Corais , Ecossistema , Metagenômica , Microbiota
4.
Genet Mol Biol ; 46(3 Suppl 1): e20230126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38091267

RESUMO

Spinal muscular atrophy (SMA) is considered one of the most common autosomal recessive disorders, with an estimated incidence of 1 in 10,000 live births. Testing for SMA has been recommended for inclusion in neonatal screening (NBS) panels since there are several therapies available and there is evidence of greater efficacy when introduced in the pre/early symptomatic phases. In Brazil, the National Neonatal Screening Program tests for six diseases, with a new law issued in 2021 stating that it should incorporate more diseases, including SMA. In the present study, dried blood spot (DBS) samples collected by the Reference Services of Neonatal Screening of RS and SP, to perform the conventional test were also screened for SMA, using real-time PCR, with SALSA MC002 technique. A total of 40,000 samples were analyzed, enabling the identification of four positive cases of SMA, that were confirmed by MLPA. Considering our sampling, Brazil seems to have an incidence comparable to the described in other regions. This work demonstrated that the use of the MC002 technique in samples routinely collected for the conventional NBS program is suitable to screen for SMA in our conditions and can be included in the expansion of the neonatal screening programs.

5.
Am J Med Genet C Semin Med Genet ; 187(3): 396-408, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529350

RESUMO

Molecular diagnosis is important to provide accurate genetic counseling of skeletal dysplasias (SD). Although next-generation sequencing (NGS) techniques are currently the preferred methods for analyzing these conditions, some of the published results have not shown a detection rate as high as it would be expected. The present study aimed to assess the diagnostic yield of targeted NGS combined with Sanger sequencing (SS) for low-coverage exons of genes of interest and exome sequencing (ES) in a series of patients with rare SD and use two patients as an example of our strategy. This study used two different in-house panels. Of 93 variants found in 88/114 (77%) patients, 57 are novel. The pathogenic variants found in the following genes: B3GALT6, PCYT1A, INPPL1, LIFR, of four patients were only detected by SS. In conclusion, the high diagnostic yield reached in the present study can be attributed to both a good selection of patients and the utilization of the SS for the insufficiently covered regions. Additionally, the two case reports-a patient with acrodysostosis related to PRKAR1A and another with ciliopathy associated with KIAA0753, add new and relevant clinical information to the current knowledge.


Assuntos
Disostoses , Osteocondrodisplasias , Colina-Fosfato Citidililtransferase , Galactosiltransferases , Aconselhamento Genético , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento do Exoma
6.
Environ Microbiol ; 23(8): 4098-4111, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34121301

RESUMO

Lysogens are common at high bacterial densities, an observation that contrasts with the prevailing view of lysogeny as a low-density refugium strategy. Here, we review the mechanisms regulating lysogeny in complex communities and show that the additive effects of coinfections, diversity and host energic status yield a bimodal distribution of lysogeny as a function of microbial densities. At high cell densities (above 106 cells ml-1 or g-1 ) and low diversity, coinfections by two or more phages are frequent and excess energy availability stimulates inefficient metabolism. Both mechanisms favour phage integration and characterize the Piggyback-the-Winner dynamic. At low densities (below 105 cells ml-1 or g-1 ), starvation represses lytic genes and extends the time window for lysogenic commitment, resulting in a higher frequency of coinfections that cause integration. This pattern follows the predictions of the refugium hypothesis. At intermediary densities (between 105 and 106 cells ml-1 or g-1 ), encounter rates and efficient energy metabolism favour lysis. This may involve Kill-the-Winner lytic dynamics and induction. Based on these three regimes, we propose a framework wherein phage integration occurs more frequently at both ends of the host density gradient, with distinct underlying molecular mechanisms (coinfections and host metabolism) dominating at each extreme.


Assuntos
Bacteriófagos , Microbiota , Bactérias/genética , Bacteriófagos/genética , Lisogenia
7.
Int J Mol Sci ; 22(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34769481

RESUMO

Ecological networking and in vitro studies predict that anaerobic, mucus-degrading bacteria are keystone species in cystic fibrosis (CF) microbiomes. The metabolic byproducts from these bacteria facilitate the colonization and growth of CF pathogens like Pseudomonas aeruginosa. Here, a multi-omics study informed the control of putative anaerobic keystone species during a transition in antibiotic therapy of a CF patient. A quantitative metagenomics approach combining sequence data with epifluorescence microscopy showed that during periods of rapid lung function loss, the patient's lung microbiome was dominated by the anaerobic, mucus-degrading bacteria belonging to Streptococcus, Veillonella, and Prevotella genera. Untargeted metabolomics and community cultures identified high rates of fermentation in these sputa, with the accumulation of lactic acid, citric acid, and acetic acid. P. aeruginosa utilized these fermentation products for growth, as indicated by quantitative transcriptomics data. Transcription levels of P. aeruginosa genes for the utilization of fermentation products were proportional to the abundance of anaerobic bacteria. Clindamycin therapy targeting Gram-positive anaerobes rapidly suppressed anaerobic bacteria and the accumulation of fermentation products. Clindamycin also lowered the abundance and transcription of P. aeruginosa, even though this patient's strain was resistant to this antibiotic. The treatment stabilized the patient's lung function and improved respiratory health for two months, lengthening by a factor of four the between-hospitalization time for this patient. Killing anaerobes indirectly limited the growth of P. aeruginosa by disrupting the cross-feeding of fermentation products. This case study supports the hypothesis that facultative anaerobes operated as keystone species in this CF microbiome. Personalized multi-omics may become a viable approach for routine clinical diagnostics in the future, providing critical information to inform treatment decisions.


Assuntos
Fibrose Cística/microbiologia , Metagenômica/métodos , Microbiota , Adulto , Antibacterianos/uso terapêutico , Fibrose Cística/complicações , Fibrose Cística/terapia , Genômica/métodos , Humanos , Pulmão/microbiologia , Masculino , Metabolômica/métodos , Microbiota/genética , Testes de Função Respiratória , Insuficiência Respiratória/genética , Insuficiência Respiratória/metabolismo , Insuficiência Respiratória/microbiologia , Insuficiência Respiratória/terapia , Escarro/microbiologia
8.
BMC Genomics ; 21(1): 126, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024463

RESUMO

BACKGROUND: Bacteriophages encode genes that modify bacterial functions during infection. The acquisition of phage-encoded virulence genes is a major mechanism for the rise of bacterial pathogens. In coral reefs, high bacterial density and lysogeny has been proposed to exacerbate reef decline through the transfer of phage-encoded virulence genes. However, the functions and distribution of these genes in phage virions on the reef remain unknown. RESULTS: Here, over 28,000 assembled viral genomes from the free viral community in Atlantic and Pacific Ocean coral reefs were queried against a curated database of virulence genes. The diversity of virulence genes encoded in the viral genomes was tested for relationships with host taxonomy and bacterial density in the environment. These analyses showed that bacterial density predicted the profile of virulence genes encoded by phages. The Shannon diversity of virulence-encoding phages was negatively related with bacterial density, leading to dominance of fewer genes at high bacterial abundances. A statistical learning analysis showed that reefs with high microbial density were enriched in viruses encoding genes enabling bacterial recognition and invasion of metazoan epithelium. Over 60% of phages could not have their hosts identified due to limitations of host prediction tools; for those which hosts were identified, host taxonomy was not an indicator of the presence of virulence genes. CONCLUSIONS: This study described bacterial virulence factors encoded in the genomes of bacteriophages at the community level. The results showed that the increase in microbial densities that occurs during coral reef degradation is associated with a change in the genomic repertoire of bacteriophages, specifically in the diversity and distribution of bacterial virulence genes. This suggests that phages are implicated in the rise of pathogens in disturbed marine ecosystems.


Assuntos
Bactérias/genética , Bacteriófagos/genética , Genes Bacterianos , Fatores de Virulência/genética , Bactérias/patogenicidade , Recifes de Corais , Ecossistema , Genoma Viral , Genômica
9.
Am J Med Genet C Semin Med Genet ; 184(4): 986-995, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33219737

RESUMO

Skeletal dysplasias (SD) are disturbances in growth due to defects intrinsic to the bone and/or cartilage, usually affecting multiple bones and having a progressive character. In this article, we review the state of clinical and research SD resources available in Latin America, including three specific countries (Brazil, Argentina, and Chile), that have established multidisciplinary clinics for the care of these patients. From the epidemiological point of view, the SD prevalence of 3.2 per 10,000 births from nine South American countries included in the ECLAMC network represents the most accurate estimate not just in Latin America, but worldwide. In Brazil, there are currently five groups focused on SD. The data from one of these groups including the website www.ocd.med.br, created to assist in the diagnosis of SD, are highlighted showing that telemedicine for this purpose represents a good strategy for the region. The experience of more than 30 years of the SD multidisciplinary clinic in an Argentinian Hospital is presented, evidencing a solid experience mainly in the follow-up of the most frequent SD, especially those belonging the FGFR3 group and OI. In Chile, a group with 20 years of experience presents its work with geneticists and pediatricians, focusing on diagnostic purposes and clinical management. Altogether, although SD health-care and research activities in Latin America are in their early stages, the experience in these three countries seems promising and stimulating for the region as a whole.


Assuntos
Osteocondrodisplasias , Argentina , Osso e Ossos , Humanos , América Latina/epidemiologia , Prevalência
10.
Proc Biol Sci ; 283(1829)2016 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-27097927

RESUMO

Coral reefs are among the most productive and diverse marine ecosystems on the Earth. They are also particularly sensitive to changing energetic requirements by different trophic levels. Microbialization specifically refers to the increase in the energetic metabolic demands of microbes relative to macrobes and is significantly correlated with increasing human influence on coral reefs. In this study, metabolic theory of ecology is used to quantify the relative contributions of two broad bacterioplankton groups, autotrophs and heterotrophs, to energy flux on 27 Pacific coral reef ecosystems experiencing human impact to varying degrees. The effective activation energy required for photosynthesis is lower than the average energy of activation for the biochemical reactions of the Krebs cycle, and changes in the proportional abundance of these two groups can greatly affect rates of energy and materials cycling. We show that reef-water communities with a higher proportional abundance of microbial autotrophs expend more metabolic energy per gram of microbial biomass. Increased energy and materials flux through fast energy channels (i.e. water-column associated microbial autotrophs) may dampen the detrimental effects of increased heterotrophic loads (e.g. coral disease) on coral reef systems experiencing anthropogenic disturbance.


Assuntos
Antozoários/metabolismo , Antozoários/microbiologia , Bactérias/metabolismo , Recifes de Corais , Fitoplâncton/metabolismo , Animais , Biomassa , Ecossistema , Metabolismo Energético , Humanos , Microbiologia da Água
11.
Environ Microbiol ; 17(10): 3832-46, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25817914

RESUMO

Shifts from coral to algae dominance of corals reefs have been correlated to fish biomass loss and increased microbial metabolism. Here we investigated reef benthic and planktonic primary production, benthic dissolved organic carbon (DOC) release and bacterial growth efficiency in the Abrolhos Bank, South Atlantic. Benthic DOC release rates are higher while water column bacterial growth efficiency is lower at impacted reefs. A trophic model based on the benthic and planktonic primary production was able to predict the observed relative fish biomass in healthy reefs. In contrast, in impacted reefs, the observed omnivorous fish biomass is higher, while that of the herbivorous/coralivorous fish is lower than predicted by the primary production-based model. Incorporating recycling of benthic-derived carbon in the model through microbial and sponge loops explains the difference and predicts the relative fish biomass in both reef types. Increased benthic carbon release rates and bacterial carbon metabolism, but decreased bacterial growth efficiency could lead to carbon losses through respiration and account for the uncoupling of benthic and fish production in phase-shifting reefs. Carbon recycling by microbial and sponge loops seems to promote an increase of small-bodied fish productivity in phase-shifting coral reefs.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Peixes/crescimento & desenvolvimento , Plâncton/crescimento & desenvolvimento , Poríferos/fisiologia , Animais , Antozoários/microbiologia , Biomassa , Carbono/metabolismo , Herbivoria , Plâncton/metabolismo
12.
Microb Ecol ; 68(3): 441-52, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24821495

RESUMO

Bacterial resistance to antibiotics has become a public health issue. Over the years, pathogenic organisms with resistance traits have been studied due to the threat they pose to human well-being. However, several studies raised awareness to the often disregarded importance of environmental bacteria as sources of resistance mechanisms. In this work, we analyze the diversity of antibiotic-resistant bacteria occurring in aquatic environments of the state of Rio de Janeiro, Brazil, that are subjected to distinct degrees of anthropogenic impacts. We access the diversity of aquatic bacteria capable of growing in increasing ampicillin concentrations through 16S rRNA gene libraries. This analysis is complemented by the characterization of antibiotic resistance profiles of isolates obtained from urban aquatic environments. We detect communities capable of tolerating antibiotic concentrations up to 600 times higher than the clinical levels. Among the resistant organisms are included potentially pathogenic species, some of them classified as multiresistant. Our results extend the knowledge of the diversity of antibiotic resistance among environmental microorganisms and provide evidence that the diversity of drug-resistant bacteria in aquatic habitats can be influenced by pollution.


Assuntos
Resistência a Ampicilina , Bactérias/efeitos dos fármacos , Microbiologia da Água , Ampicilina , Bactérias/classificação , Bactérias/genética , Praias , Baías , Brasil , Cidades , DNA Bacteriano/genética , Biblioteca Gênica , RNA Ribossômico 16S/genética , Rios/microbiologia , Água do Mar/microbiologia
13.
mSystems ; 9(5): e0008324, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38647296

RESUMO

Algal blooms can give snowmelt a red color, reducing snow albedo and creating a runaway effect that accelerates snow melting. The occurrence of red snow is predicted to grow in polar and subpolar regions with increasing global temperatures. We hypothesize that these algal blooms affect virus-bacteria interactions in snow, with potential effects on snowmelt dynamics. A genomic analysis of double-stranded DNA virus communities in red and white snow from the Whistler region of British Columbia, Canada, identified 792 putative viruses infecting bacteria. The most abundant putative snow viruses displayed low genomic similarity with known viruses. We recovered the complete circular genomes of nine putative viruses, two of which were classified as temperate. Putative snow viruses encoded genes involved in energy metabolisms, such as NAD+ synthesis and salvage pathways. In model phages, these genes facilitate increased viral particle production and lysis rates. The frequency of temperate phages was positively correlated with microbial abundance in the snow samples. These results suggest the increased frequency of temperate virus-bacteria interactions as microbial densities increase during snowmelt. We propose that this virus-bacteria dynamic may facilitate the red snow algae growth stimulated by bacteria.IMPORTANCEMicrobial communities in red snow algal blooms contribute to intensifying snowmelt rates. The role of viruses in snow during this environmental shift, however, has yet to be elucidated. Here, we characterize novel viruses extracted from snow viral metagenomes and define the functional capacities of snow viruses in both white and red snow. These results are contextualized using the composition and functions observed in the bacterial communities from the same snow samples. Together, these data demonstrate the energy metabolism performed by viruses and bacteria in a snow algal bloom, as well as expand the overall knowledge of viral genomes in extreme environments.


Assuntos
Neve , Neve/virologia , Neve/microbiologia , Colúmbia Britânica , Bactérias/genética , Bactérias/virologia , Bactérias/isolamento & purificação , Eutrofização , Genoma Viral/genética , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Rodófitas/virologia , Vírus/genética , Vírus/isolamento & purificação , Vírus/classificação
14.
ISME J ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030686

RESUMO

Reef-building corals depend on an intricate community of microorganisms for functioning and resilience. The infection of coral-associated bacteria by bacteriophages can modify bacteria-host interactions, yet very little is known about phage functions in the holobiont. This gap stems from methodological limitations that have prevented the recovery of high-quality viral genomes and bacterial host assignment from coral samples. Here, we introduce a size fractionation approach that increased bacterial and viral recovery in coral metagenomes by 9-fold and 2-fold, respectively, and enabled the assembly and binning of bacterial and viral genomes at relatively low sequencing coverage. We combined these viral genomes with those derived from 677 publicly available metagenomes, viromes, and bacterial isolates from stony corals to build a global coral virus database of over 20 000 viral genomic sequences spanning four viral realms. The tailed bacteriophage families Kyanoviridae and Autographiviridae were the most abundant, replacing groups formerly referred to as Myoviridae and Podoviridae, respectively. Prophage and CRISPR spacer linkages between these viruses and 626 bacterial metagenome-assembled genomes and bacterial isolates showed that most viruses infected Alphaproteobacteria, the most abundant class, and less abundant taxa like Halanaerobiia and Bacteroidia. A host-phage-gene network identified keystone viruses with the genomic capacity to modulate bacterial metabolic pathways and direct molecular interactions with eukaryotic cells. This study reveals the genomic basis of nested symbioses between bacteriophage, bacteria, and the coral host and its endosymbiotic algae.

15.
Nat Rev Microbiol ; 22(8): 460-475, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38438489

RESUMO

Stony corals, the engines and engineers of reef ecosystems, face unprecedented threats from anthropogenic environmental change. Corals are holobionts that comprise the cnidarian animal host and a diverse community of bacteria, archaea, viruses and eukaryotic microorganisms. Recent research shows that the bacterial microbiome has a pivotal role in coral biology. A healthy bacterial assemblage contributes to nutrient cycling and stress resilience, but pollution, overfishing and climate change can break down these symbiotic relationships, which results in disease, bleaching and, ultimately, coral death. Although progress has been made in characterizing the spatial-temporal diversity of bacteria, we are only beginning to appreciate their functional contribution. In this Review, we summarize the ecological and metabolic interactions between bacteria and other holobiont members, highlight the biotic and abiotic factors influencing the structure of bacterial communities and discuss the impact of climate change on these communities and their coral hosts. We emphasize how microbiome-based interventions can help to decipher key mechanisms underpinning coral health and promote reef resilience. Finally, we explore how recent technological developments may be harnessed to address some of the most pressing challenges in coral microbiology, providing a road map for future research in this field.


Assuntos
Antozoários , Bactérias , Mudança Climática , Microbiota , Simbiose , Antozoários/microbiologia , Animais , Microbiota/fisiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Recifes de Corais
16.
Microb Ecol ; 65(1): 205-13, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22864853

RESUMO

The association of metazoan, protist, and microbial communities with Scleractinian corals forms the basis of the coral holobiont. Coral bleaching events have been occurring around the world, introducing changes in the delicate balance of the holobiont symbiotic interactions. In this study, Archaea, bacteria, and eukaryotic phototrophic plastids of bleached colonies of the Brazilian coral Siderastrea stellata were analyzed for the first time, using 16S rRNA gene libraries. Prokaryotic communities were slightly more diverse in healthy than in bleached corals. However, the eukaryotic phototrophic plastids community was more diverse in bleached corals. Archaea phylogenetic analyses revealed a high percentage of Crenarchaeota sequences, mainly related to Nitrosopumilus maritimus and Cenarchaeum symbiosum. Dramatic changes in bacterial community composition were observed in this bleaching episode. The dominant bacterial group was Alphaproteobacteria followed by Gammaproteobacteria in bleached and Betaproteobacteria in healthy samples. Plastid operational taxonomic units (OTUs) from both coral samples were mainly related to red algae chloroplasts (Florideophycea), but we also observed some OTUs related to green algae chloroplasts (Chlorophyta). There seems to be a strong relationship between the Bacillariophyta phylum and our bleached coral samples as clones related to members of the diatom genera Amphora and Nitzschia were detected. The present study reveals information from a poorly investigated coral species and improves the knowledge of coral microbial community shifts that could occur during bleaching episodes.


Assuntos
Antozoários/microbiologia , Archaea/classificação , Bactérias/classificação , Clorófitas/genética , Rodófitas/classificação , Animais , Archaea/genética , Bactérias/genética , Brasil , Clorófitas/classificação , Código de Barras de DNA Taxonômico , DNA de Algas/genética , DNA Arqueal/genética , DNA Bacteriano/genética , Diatomáceas/classificação , Diatomáceas/genética , Ecossistema , Biblioteca Gênica , Filogenia , Plastídeos/genética , RNA Ribossômico 16S/genética , Rodófitas/genética , Simbiose
17.
Microbiome ; 11(1): 118, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37237317

RESUMO

BACKGROUND: Viruses play important roles in the ocean's biogeochemical cycles. Yet, deep ocean viruses are one of the most under-explored fractions of the global biosphere. Little is known about the environmental factors that control the composition and functioning of their communities or how they interact with their free-living or particle-attached microbial hosts. RESULTS: We analysed 58 viral communities associated with size-fractionated free-living (0.2-0.8 µm) and particle-attached (0.8-20 µm) cellular metagenomes from bathypelagic (2150-4018 m deep) microbiomes obtained during the Malaspina expedition. These metagenomes yielded 6631 viral sequences, 91% of which were novel, and 67 represented high-quality genomes. Taxonomic classification assigned 53% of the viral sequences to families of tailed viruses from the order Caudovirales. Computational host prediction associated 886 viral sequences to dominant members of the deep ocean microbiome, such as Alphaproteobacteria (284), Gammaproteobacteria (241), SAR324 (23), Marinisomatota (39), and Chloroflexota (61). Free-living and particle-attached viral communities had markedly distinct taxonomic composition, host prevalence, and auxiliary metabolic gene content, which led to the discovery of novel viral-encoded metabolic genes involved in the folate and nucleotide metabolisms. Water mass age emerged as an important factor driving viral community composition. We postulated this was due to changes in quality and concentration of dissolved organic matter acting on the host communities, leading to an increase of viral auxiliary metabolic genes associated with energy metabolism among older water masses. CONCLUSIONS: These results shed light on the mechanisms by which environmental gradients of deep ocean ecosystems structure the composition and functioning of free-living and particle-attached viral communities. Video Abstract.


Assuntos
Microbiota , Vírus , Água do Mar/microbiologia , Água , Genes Virais , Vírus/genética , Microbiota/genética , Oceanos e Mares
18.
Mol Syndromol ; 13(6): 485-495, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36660027

RESUMO

Introduction: Pathogenic variants in the SLC26A2/DTDST gene cause the following spectrum of phenotypes: achondrogenesis 1B (ACG1B), atelosteogenesis 2 (AO2), diastrophic dysplasia (DTD), and recessive-multiple epiphyseal dysplasia (rMED), the first 2 being lethal. Here, we report a cohort and a comprehensive literature review on a genotype-phenotype correlation of SLC26A2/DTDST-related disorders. Methods: The local patients were genotyped by Sanger sequencing or next-generation sequencing (NGS). We reviewed data from the literature regarding phenotype, zygosity, and genotype in parallel. Results: The local cohort enrolled 12 patients, including one with a Desbuquois-like phenotype. All but one showed biallelic mutations, however, only one allele mutated in a fetus presenting ACG1B was identified. The literature review identified 42 articles and the analyses of genotype and zygosity included the 12 local patients. Discussion: The R279W variant was the most prevalent among the local patients. It was in homozygosity (hmz) in 2 patients with rMED and in compound heterozygosity (chtz) in 9 patients. The genotype and zygosity review of all patients led to the following conclusions: DTD is the most common phenotype in Finland due to a Finnish mutation (c.727-1G>C). Outside of Finland, rMED is the most prevalent phenotype, usually associated with R279W in hmz. In contrast, DTD's genotype is usually in chtz. Despite a large number of variants (38), just 8 are recurrent (R279W, C653S, c.-26+2T>C, R178*, K575Sfs*10, V340del, G663R, T512K). The last 3 in hmz lead to lethal phenotypes. The Finnish mutation is found only in chtz outside of Finland, being associated with all 4 classical phenotypes. The p.R178* and p.K575Sfs*10 variants should be viewed as lethal mutations since both were mainly described with lethal phenotypes and were never reported in hmz. The existence of 9 patients with only one mutated allele suggests that other mutations in the other allele of these patients still need to be unveiled.

19.
Commun Earth Environ ; 4(1): 126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665202

RESUMO

Viral infections modulate bacterial metabolism and ecology. Here, we investigated the hypothesis that viruses influence the ecology of purple and green sulfur bacteria in anoxic and sulfidic lakes, analogs of euxinic oceans in the geologic past. By screening metagenomes from lake sediments and water column, in addition to publicly-available genomes of cultured purple and green sulfur bacteria, we identified almost 300 high and medium-quality viral genomes. Viruses carrying the gene psbA, encoding the small subunit of photosystem II protein D1, were ubiquitous, suggesting viral interference with the light reactions of sulfur oxidizing autotrophs. Viruses predicted to infect these autotrophs also encoded auxiliary metabolic genes for reductive sulfur assimilation as cysteine, pigment production, and carbon fixation. These observations show that viruses have the genomic potential to modulate the production of metabolic markers of phototrophic sulfur bacteria that are used to identify photic zone euxinia in the geologic past.

20.
Sci Total Environ ; 891: 164465, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37247740

RESUMO

Microbes play a central role in coral reef health. However, the relative importance of physical-chemical and biological processes in the control of microbial biomass are unknown. Here, we applied machine learning to analyze a large dataset of biological, physical, and chemical parameters (N = 665 coral reef seawater samples) to understand the factors that modulate microbial abundance in the water of Abrolhos reefs, the largest and richest coral reefs of the Southwest Atlantic. Random Forest (RF) and Boosted Regression Tree (BRT) models indicated that hydrodynamic forcing, Dissolved Organic Carbon (DOC), and Total Nitrogen (TN) were the most important predictors of microbial abundance. The possible cumulative effects of higher temperatures, longer seawater residence time, higher nutrient concentration, and lower coral and fish biomass observed in coastal reefs resulted in higher microbial abundance, potentially impacting coral resilience against stressors.


Assuntos
Antozoários , Recifes de Corais , Animais , Biomassa , Temperatura Alta , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA