Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cell Immunol ; 390: 104731, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37302321

RESUMO

The CD300 glycoproteins are a family of related leucocyte surface molecules that regulate the immune response via their paired triggering and inhibitory receptors. Here we studied CD300f, an apoptotic cell receptor, and how it modulates the function of human monocytes and macrophages. We showed that CD300f signalling by crosslinking with anti-CD300f mAb (DCR-2) suppressed monocytes causing upregulation of the inhibitory molecule, CD274 (PD-L1) and their inhibition of T cell proliferation. Furthermore, CD300f signalling drove macrophages preferentially towards M2-type with upregulation of CD274, which was further enhanced by IL-4. CD300f signalling activates the PI3K/Akt pathway in monocytes. Inhibition of PI3K/Akt signalling resulting from CD300f crosslinking leads to downregulation of CD274 expression on monocytes. These findings highlight the potential use of CD300f blockade in cancer immune therapy to target immune suppressive macrophages in the tumour microenvironment, a known resistance mechanism to PD-1/PD-L1 checkpoint inhibitors.


Assuntos
Antígeno B7-H1 , Monócitos , Humanos , Antígeno B7-H1/metabolismo , Macrófagos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Imunológicos/metabolismo
2.
Semin Cell Dev Biol ; 86: 3-14, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29499385

RESUMO

Dendritic cells (DC) are bone marrow derived leucocytes that are part of the mononuclear phagocytic system. These are surveillance cells found in all tissues and, as specialised antigen presenting cells, direct immune responses. Membrane molecules on the DC surface form a landscape that defines them as leucocytes and part of the mononuclear phagocytic system, interacts with their environment and directs interactions with other cells. This review describes the DC surface landscape, reflects on the different molecules confirmed to be on their surface and how they provide the basis for manipulation and translation of the potent functions of these cells into new diagnostics and immune therapies for the clinic.


Assuntos
Células Dendríticas/citologia , Fenótipo , Células Dendríticas/imunologia , Humanos
3.
Immunity ; 34(4): 602-15, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21511186

RESUMO

This study describes a CD4+ T helper (Th) cell subset marked by coexpression of the cytokine interleukin 21 (IL-21) and the gut-homing chemokine receptor CCR9. Although CCR9+ Th cells were observed in healthy mice and humans, they were enriched in the inflamed pancreas and salivary glands of NOD mice and in the circulation of Sjögren's syndrome patients. CCR9+ Th cells expressed large amounts of IL-21, inducible T cell costimulator (ICOS), and the transcription factors Bcl6 and Maf, and also supported antibody production from B cells, thereby resembling T follicular B helper (Tfh) cells. However, in contrast to Tfh cells, CCR9+ Th cells displayed limited expression of CXCR5 and the targets of CCR9+ Th cells were CD8+ T cells whose responsiveness to IL-21 was necessary for the development of diabetes. Thus, CCR9+ Th cells are a subset of IL-21-producing T helper cells that influence regional specification of autoimmune diseases that affect accessory organs of the digestive system.


Assuntos
Autoimunidade , Interleucinas/imunologia , Ilhotas Pancreáticas/imunologia , Receptores CCR/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Movimento Celular , Sobrevivência Celular , Diabetes Mellitus/imunologia , Feminino , Humanos , Interleucinas/biossíntese , Camundongos , Camundongos Knockout , Receptores de Interleucina-21/deficiência , Receptores de Interleucina-21/imunologia , Síndrome de Sjogren/imunologia , Linfócitos T Auxiliares-Indutores/citologia
4.
Int J Mol Sci ; 21(17)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872240

RESUMO

Androgens have been known to inhibit cutaneous wound healing in men and male mice. However, in children with major burn injuries, a synthetic androgen was reported clinically to improve wound healing. The aim of this study is to investigate the role of dihydrotestosterone (DHT) as a new therapeutic approach in treating major burn injury. In the present study, mice received systemic androgen treatment post major burn injury. Wound healing rate and body weight were monitored over 21 days. The serum level of inflammatory cytokines/chemokines were measured using multiplex immunoassays. In addition, splenocyte enumeration was performed by flow cytometry. Healing phases of inflammation, re-epithelialization, cell proliferation and collagen deposition were also examined. In results, DHT treated mice lost less weight and displayed accelerated wound healing but has no impact on hypermetabolism. Mice, after burn injury, displayed acute systemic inflammatory responses over 21 days. DHT treatment shortened the systemic inflammatory response with reduced splenic weight and monocyte numbers on day 14 and 21. DHT treatment also reduced wound infiltrating macrophage numbers. In conclusion, DHT treatment facilitates local wound healing by accelerating the resolution of inflammation, but not through alterations of post-burn hypermetabolic response.


Assuntos
Androgênios/administração & dosagem , Queimaduras/tratamento farmacológico , Di-Hidrotestosterona/administração & dosagem , Cicatrização/efeitos dos fármacos , Androgênios/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Queimaduras/sangue , Queimaduras/imunologia , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Citocinas/sangue , Di-Hidrotestosterona/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Baço/efeitos dos fármacos , Baço/imunologia
5.
Haematologica ; 103(4): 655-665, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29351987

RESUMO

Chemotherapy and hematopoietic stem cell transplantation are effective treatments for most Hodgkin lymphoma patients, however there remains a need for better tumor-specific target therapy in Hodgkin lymphoma patients with refractory or relapsed disease. Herein, we demonstrate that membrane CD83 is a diagnostic and therapeutic target, highly expressed in Hodgkin lymphoma cell lines and Hodgkin and Reed-Sternberg cells in 29/35 (82.9%) Hodgkin lymphoma patient lymph node biopsies. CD83 from Hodgkin lymphoma tumor cells was able to trogocytose to surrounding T cells and, interestingly, the trogocytosing CD83+T cells expressed significantly more programmed death-1 compared to CD83-T cells. Hodgkin lymphoma tumor cells secreted soluble CD83 that inhibited T-cell proliferation, and anti-CD83 antibody partially reversed the inhibitory effect. High levels of soluble CD83 were detected in Hodgkin lymphoma patient sera, which returned to normal in patients who had good clinical responses to chemotherapy confirmed by positron emission tomography scans. We generated a human anti-human CD83 antibody, 3C12C, and its toxin monomethyl auristatin E conjugate, that killed CD83 positive Hodgkin lymphoma cells but not CD83 negative cells. The 3C12C antibody was tested in dose escalation studies in non-human primates. No toxicity was observed, but there was evidence of CD83 positive target cell depletion. These data establish CD83 as a potential biomarker and therapeutic target in Hodgkin lymphoma.


Assuntos
Antígenos CD/sangue , Biomarcadores Tumorais/sangue , Doença de Hodgkin/tratamento farmacológico , Imunoglobulinas/sangue , Glicoproteínas de Membrana/sangue , Terapia de Alvo Molecular/métodos , Adolescente , Adulto , Idoso , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antígenos CD/imunologia , Feminino , Doença de Hodgkin/diagnóstico , Humanos , Imunoglobulinas/imunologia , Masculino , Glicoproteínas de Membrana/imunologia , Pessoa de Meia-Idade , Terapia de Salvação/métodos , Linfócitos T/citologia , Adulto Jovem , Antígeno CD83
6.
J Immunol ; 197(3): 885-98, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27316686

RESUMO

C-type lectin receptors play important roles in immune cell interactions with the environment. We described CD302 as the simplest, single domain, type I C-type lectin receptor and showed it was expressed mainly on the myeloid phagocytes in human blood. CD302 colocalized with podosomes and lamellopodia structures, so we hypothesized that it played a role in cell adhesion or migration. In this study, we used mouse models to obtain further insights into CD302 expression and its potential immunological function. Mouse CD302 transcripts were, as in humans, highest in the liver, followed by lungs, lymph nodes (LN), spleen, and bone marrow. In liver, CD302 was expressed by hepatocytes, liver sinusoidal endothelial cells, and Kupffer cells. A detailed analysis of CD302 transcription in mouse immune cells revealed highest expression by myeloid cells, particularly macrophages, granulocytes, and myeloid dendritic cells (mDC). Interestingly, 2.5-fold more CD302 was found in migratory compared with resident mDC populations and higher CD302 expression in mouse M1 versus M2 macrophages was also noteworthy. CD302 knockout (CD302KO) mice were generated. Studies on the relevant immune cell populations revealed a decrease in the frequency and numbers of migratory mDC within CD302KO LN compared with wild-type LN. In vitro studies showed CD302KO and wild-type DC had an equivalent capacity to undergo maturation, prime T cells, uptake Ags, and migrate toward the CCL19/CCL21 chemokines. Nevertheless, CD302KO migratory DC exhibited reduced in vivo migration into LN, confirming a functional role for CD302 in mDC migration.


Assuntos
Quimiotaxia de Leucócito/fisiologia , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Linhagem Celular , Separação Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase
7.
J Immunol ; 197(12): 4613-4625, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27837105

RESUMO

CD83 is a member of the Ig gene superfamily, first identified in activated lymphocytes. Since then, CD83 has become an important marker for defining activated human dendritic cells (DC). Several potential CD83 mRNA isoforms have been described, including a soluble form detected in human serum, which may have an immunosuppressive function. To further understand the biology of CD83, we examined its expression in different human immune cell types before and after activation using a panel of mouse and human anti-human CD83 mAb. The mouse anti-human CD83 mAbs, HB15a and HB15e, and the human anti-human CD83 mAb, 3C12C, were selected to examine cytoplasmic and surface CD83 expression, based on their different binding characteristics. Glycosylation of CD83, the CD83 mRNA isoforms, and soluble CD83 released differed among blood DC, monocytes, and monocyte-derived DC, and other immune cell types. A small T cell population expressing surface CD83 was identified upon T cell stimulation and during allogeneic MLR. This subpopulation appeared specifically during viral Ag challenge. We did not observe human CD83 on unstimulated human natural regulatory T cells (Treg), in contrast to reports describing expression of CD83 on mouse Treg. CD83 expression was increased on CD4+, CD8+ T, and Treg cells in association with clinical acute graft-versus-host disease in allogeneic hematopoietic cell transplant recipients. The differential expression and function of CD83 on human immune cells reveal potential new roles for this molecule as a target of therapeutic manipulation in transplantation, inflammation, and autoimmune diseases.


Assuntos
Antígenos CD/metabolismo , Células Dendríticas/imunologia , Doença Enxerto-Hospedeiro/imunologia , Transplante de Células-Tronco Hematopoéticas , Imunoglobulinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Monócitos/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Doença Aguda , Animais , Antígenos CD/genética , Antígenos Virais/imunologia , Células Cultivadas , Glicosilação , Humanos , Imunoglobulinas/genética , Ativação Linfocitária , Glicoproteínas de Membrana/genética , Camundongos , Isoformas de RNA/genética , RNA Mensageiro/genética , Transplante Homólogo , Antígeno CD83
8.
Eur J Immunol ; 45(6): 1820-31, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25931426

RESUMO

In this study, a critical and novel role for TNF receptor (TNFR) associated factor 2 (TRAF2) is elucidated for peripheral CD8(+) T-cell and NKT-cell homeostasis. Mice deficient in TRAF2 only in their T cells (TRAF2TKO) show ∼40% reduction in effector memory and ∼50% reduction in naïve CD8(+) T-cell subsets. IL-15-dependent populations were reduced further, as TRAF2TKO mice displayed a marked ∼70% reduction in central memory CD8(+) CD44(hi) CD122(+) T cells and ∼80% decrease in NKT cells. TRAF2TKO CD8(+) CD44(hi) T cells exhibited impaired dose-dependent proliferation to exogenous IL-15. In contrast, TRAF2TKO CD8(+) T cells proliferated normally to anti-CD3 and TRAF2TKO CD8(+) CD44(hi) T cells exhibited normal proliferation to exogenous IL-2. TRAF2TKO CD8(+) T cells expressed normal levels of IL-15-associated receptors and possessed functional IL-15-mediated STAT5 phosphorylation, however TRAF2 deletion caused increased AKT activation. Loss of CD8(+) CD44(hi) CD122(+) and NKT cells was mechanistically linked to an inability to respond to IL-15. The reduced CD8(+) CD44(hi) CD122(+) T-cell and NKT-cell populations in TRAF2TKO mice were rescued in the presence of high dose IL-15 by IL-15/IL-15Rα complex administration. These studies demonstrate a critical role for TRAF2 in the maintenance of peripheral CD8(+) CD44(hi) CD122(+) T-cell and NKT-cell homeostasis by modulating sensitivity to T-cell intrinsic growth factors such as IL-15.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/fisiologia , Homeostase , Interleucina-15/farmacologia , Células T Matadoras Naturais/efeitos dos fármacos , Células T Matadoras Naturais/fisiologia , Fator 2 Associado a Receptor de TNF/genética , Animais , Microambiente Celular , Citocinas/farmacologia , Feminino , Expressão Gênica , Memória Imunológica , Imunofenotipagem , Contagem de Linfócitos , Linfopenia/genética , Linfopenia/imunologia , Linfopenia/metabolismo , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Interleucina-15/genética , Receptores de Interleucina-15/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/fisiologia , Fator 2 Associado a Receptor de TNF/metabolismo , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo
9.
Immunol Cell Biol ; 94(5): 447-57, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26791160

RESUMO

Human plasmacytoid dendritic cells (pDCs) were considered to be a phenotypically and functionally homogeneous cell population; however, recent analyses indicate potential heterogeneity. This is of major interest, given their importance in the induction of anti-viral responses and their role in creating immunologically permissive environments for human malignancies. For this reason, we investigated the possible presence of human pDC subsets in blood and bone marrow, using unbiased cell phenotype clustering and functional studies. This defined two major functionally distinct human pDC subsets, distinguished by differential expression of CD2. The CD2(hi) and CD2(lo) pDCs represent discontinuous subsets, each with hallmark pDC functionality, including interferon-alpha production. The rarer CD2(hi) pDC subset demonstrated a significant survival advantage over CD2(lo) pDC during stress and upon exposure to glucocorticoids (GCs), which was associated with higher expression of the anti-apoptotic molecule BCL2. The differential sensitivity of these two human pDC subsets to GCs is demonstrated in vivo by a relative increase in CD2(hi) pDC in multiple myeloma patients treated with GCs. Hence, the selective apoptosis of CD2(lo) pDC during stress represents a novel mechanism for the control of innate responses.


Assuntos
Antígenos CD2/metabolismo , Células Dendríticas/metabolismo , Estresse Fisiológico , Apoptose/efeitos dos fármacos , Medula Óssea/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Glucocorticoides/farmacologia , Humanos , Ligantes , Linfonodos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores Imunológicos/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Receptores Toll-Like/metabolismo
10.
J Immunol ; 191(1): 97-109, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23740954

RESUMO

Marginal zone (MZ) B cells are an innate-like population that oscillates between MZ and follicular areas of the splenic white pulp. Differentiation of B cells into the MZ subset is governed by BCR signal strength and specificity, NF-κB activation through the B cell-activating factor belonging to the TNF family (BAFF) receptor, Notch2 signaling, and migration signals mediated by chemokine, integrin, and sphingosine-1-phosphate receptors. An imbalance in splenic B cell development resulting in expansion of the MZ subset has been associated with autoimmune pathogenesis in various murine models. One example is the NOD inbred mouse strain, in which MZ B cell expansion has been linked to development of type 1 diabetes and Sjögren's syndrome. However, the cause of MZ B cell expansion in this strain remains poorly understood. We have determined that increased MZ B cell development in NOD mice is independent of T cell autoimmunity, BCR specificity, BCR signal strength, and increased exposure to BAFF. Rather, mixed bone marrow chimeras showed that the factor(s) responsible for expansion of the NOD MZ subset is B cell intrinsic. Analysis of microarray expression data indicated that NOD MZ and precursor transitional 2-MZ subsets were particularly dysregulated for genes controlling cellular trafficking, including Apoe, Ccbp2, Cxcr7, Lgals1, Pla2g7, Rgs13, S1pr3, Spn, Bid, Cd55, Prf1, and Tlr3. Furthermore, these B cell subsets exhibited an increased steady state dwell time within splenic MZ areas. Our data therefore reveal that precursors of mature B cells in NOD mice exhibit an altered migration set point, allowing increased occupation of the MZ, a niche favoring MZ B cell differentiation.


Assuntos
Fator Ativador de Células B/fisiologia , Subpopulações de Linfócitos B/imunologia , Diferenciação Celular/imunologia , Receptor Notch2/fisiologia , Receptores de Antígenos de Linfócitos B/fisiologia , Receptores de Lisoesfingolipídeo/fisiologia , Baço/imunologia , Animais , Fator Ativador de Células B/deficiência , Receptor do Fator Ativador de Células B/fisiologia , Subpopulações de Linfócitos B/metabolismo , Subpopulações de Linfócitos B/patologia , Diferenciação Celular/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Pró-Proteína Convertases/fisiologia , Serina Endopeptidases/fisiologia , Baço/metabolismo , Baço/patologia
11.
Trends Immunol ; 32(6): 287-94, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21531625

RESUMO

B cells play a pathogenic role as antigen-presenting cells and autoantibody secretors in the lead up to T cell-mediated autoimmune destruction of insulin-producing ß cells in type 1 diabetes (T1D). This has led to significant interest in the use of B cell depletion therapies as a treatment for T1D. In this review, we compare results from five recent studies that used distinct B cell-depleting agents and protocols to successfully prevent and even reverse T1D in the non-obese diabetic (NOD) mouse model. We discuss how information gained from animal studies could be used to improve on the positive outcomes of a completed phase II clinical trial of the B cell-depleting drug rituximab in humans with recent-onset T1D.


Assuntos
Linfócitos B/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Animais , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Monoclonais Murinos/uso terapêutico , Ensaios Clínicos Fase II como Assunto , Humanos , Cinética , Rituximab
12.
J Immunol ; 189(3): 1406-17, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22732593

RESUMO

Autoimmune type 1 diabetes (T1D) in humans and NOD mice results from interactions between multiple susceptibility genes (termed Idd) located within and outside the MHC. Despite sharing ∼88% of their genome with NOD mice, including the H2(g7) MHC haplotype and other important Idd genes, the closely related nonobese resistant (NOR) strain fails to develop T1D because of resistance alleles in residual genomic regions derived from C57BLKS mice mapping to chromosomes (Chr.) 1, 2, and 4. We previously produced a NOD background strain with a greatly decreased incidence of T1D as the result of a NOR-derived 44.31-Mb congenic region on distal Chr. 4 containing disease-resistance alleles that decrease the pathogenic activity of autoreactive B and CD4 T cells. In this study, a series of subcongenic strains for the NOR-derived Chr. 4 region was used to significantly refine genetic loci regulating diabetogenic B and CD4 T cell activity. Analyses of these subcongenic strains revealed the presence of at least two NOR-origin T1D resistance genes within this region. A 6.22-Mb region between rs13477999 and D4Mit32, not previously known to contain a locus affecting T1D susceptibility and now designated Idd25, was found to contain the main NOR gene(s) dampening diabetogenic B cell activity, with Ephb2 and/or Padi2 being strong candidates as the causal variants. Penetrance of this Idd25 effect was influenced by genes in surrounding regions controlling B cell responsiveness and anergy induction. Conversely, the gene(s) controlling pathogenic CD4 T cell activity was mapped to a more proximal 24.26-Mb region between the rs3674285 and D4Mit203 markers.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Comunicação Celular/genética , Comunicação Celular/imunologia , Diabetes Mellitus Tipo 1/imunologia , Marcadores Genéticos/imunologia , Animais , Subpopulações de Linfócitos B/metabolismo , Subpopulações de Linfócitos B/patologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Células Cultivadas , Cruzamentos Genéticos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Feminino , Regulação da Expressão Gênica/imunologia , Marcadores Genéticos/genética , Predisposição Genética para Doença/genética , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Transgênicos , Quimera por Radiação/genética , Quimera por Radiação/imunologia
13.
Acta Biomater ; 184: 54-67, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871204

RESUMO

Wound healing is facilitated by biomaterials-based grafts and substantially impacted by orchestrated inflammatory responses that are essential to the normal repair process. Tropoelastin (TE) based materials are known to shorten the period for wound repair but the mechanism of anti-inflammatory performance is not known. To explore this, we compared the performance of the gold standard Integra Dermal Regeneration Template (Integra), polyglycerol sebacate (PGS), and TE blended with PGS, in a murine full-thickness cutaneous wound healing study. Systemically, blending with TE favorably increased the F4/80+ macrophage population by day 7 in the spleen and contemporaneously induced elevated plasma levels of anti-inflammatory IL-10. In contrast, the PGS graft without TE prompted prolonged inflammation, as evidenced by splenomegaly and greater splenic granulocyte and monocyte fractions at day 14. Locally, the inclusion of TE in the graft led to increased anti-inflammatory M2 macrophages and CD4+T cells at the wound site, and a rise in Foxp3+ regulatory T cells in the wound bed by day 7. We conclude that the TE-incorporated skin graft delivers a pro-healing environment by modulating systemic and local tissue responses. STATEMENT OF SIGNIFICANCE: Tropoelastin (TE) has shown significant benefits in promoting the repair and regeneration of damaged human tissues. In this study, we show that TE promotes an anti-inflammatory environment that facilitates cutaneous wound healing. In a mouse model, we find that inserting a TE-containing material into a full-thickness wound results in defined, pro-healing local and systemic tissue responses. These findings advance our understanding of TE's restorative value in tissue engineering and regenerative medicine, and pave the way for clinical applications.


Assuntos
Tropoelastina , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Glicerol/farmacologia , Glicerol/análogos & derivados , Glicerol/química , Polímeros/farmacologia , Polímeros/química , Decanoatos/química , Decanoatos/farmacologia , Pele/patologia , Pele/efeitos dos fármacos , Masculino , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Interleucina-10/metabolismo
14.
Diabetologia ; 56(12): 2659-68, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24013782

RESUMO

AIMS/HYPOTHESIS: Type 1 diabetes is characterised by early peri-islet insulitis and insulin autoantibodies, followed by invasive insulitis and beta cell destruction. The immunological events that precipitate invasive insulitis are not well understood. We tested the hypothesis that B cells in diabetes-prone NOD mice drive invasive insulitis through elevated expression of CD19 and consequent enhanced uptake and presentation of beta cell membrane-bound antigens to islet invasive T cells. METHODS: CD19 expression and signalling pathways in B cells from NOD and control mice were compared. Expansion of CD8(+) T cells specific for insulin and islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) were compared in CD19-deficient and wild-type NOD mice and this was correlated with insulitis severity. The therapeutic potential of anti-CD19 treatment during the period of T cell activation was assessed for its ability to block invasive insulitis. RESULTS: CD19 expression and signalling in B cells was increased in NOD mice. CD19 deficiency significantly diminished the expansion of CD8(+) T cells with specificity for the membrane-bound beta cell antigen, IGRP. Conversely the reduction in CD8(+) T cells with specificity for the soluble beta cell antigen, insulin, was relatively small and not significant. CONCLUSIONS/INTERPRETATION: Elevated CD19 on NOD B cells promotes presentation of the membrane-bound antigen, IGRP, mediating the expansion of autoreactive T cells specific for antigens integral to beta cells, which are critical for invasive insulitis and diabetes. Downregulating the CD19 signalling pathway in insulin autoantibody-positive individuals before the development of type 1 diabetes may prevent expansion of islet-invasive T cells and preserve beta cell mass.


Assuntos
Antígenos CD19/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Inflamação/imunologia , Ilhotas Pancreáticas/imunologia , Ativação Linfocitária/imunologia , Estado Pré-Diabético/imunologia , Transdução de Sinais , Animais , Autoanticorpos/imunologia , Western Blotting , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/metabolismo , Progressão da Doença , Feminino , Citometria de Fluxo , Inflamação/genética , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos NOD , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia
15.
Front Immunol ; 13: 784528, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222372

RESUMO

Antibodies targeting the activation marker CD83 can achieve immune suppression by targeting antigen-presenting mature dendritic cells (DC). This study investigated the immunosuppressive mechanisms of anti-CD83 antibody treatment in mice and tested its efficacy in a model of autoimmune rheumatoid arthritis. A rat anti-mouse CD83 IgG2a monoclonal antibody, DCR-5, was developed and functionally tested in mixed leukocyte reactions, demonstrating depletion of CD83+ conventional (c)DC, induction of regulatory DC (DCreg), and suppression of allogeneic T cell proliferation. DCR-5 injection into mice caused partial splenic cDC depletion for 2-4 days (mostly CD8+ and CD83+ cDC affected) with a concomitant increase in DCreg and regulatory T cells (Treg). Mice with collagen induced arthritis (CIA) treated with 2 or 6 mg/kg DCR-5 at baseline and every three days thereafter until euthanasia at day 36 exhibited significantly reduced arthritic paw scores and joint pathology compared to isotype control or untreated mice. While both doses reduced anti-collagen antibodies, only 6 mg/kg achieved significance. Treatment with 10 mg/kg DCR-5 was ineffective. Immunohistological staining of spleens at the end of CIA model with CD11c, CD83, and FoxP3 showed greater DC depletion and Treg induction in 6 mg/kg compared to 10 mg/kg DCR-5 treated mice. In conclusion, DCR-5 conferred protection from arthritis by targeting CD83, resulting in selective depletion of mature cDC and subsequent increases in DCreg and Treg. This highlights the potential for anti-CD83 antibodies as a targeted therapy for autoimmune diseases.


Assuntos
Artrite Experimental , Doenças Autoimunes , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Células Dendríticas , Imunossupressores/farmacologia , Camundongos , Camundongos Endogâmicos DBA , Ratos , Linfócitos T Reguladores
16.
Eur J Immunol ; 40(12): 3413-25, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21108464

RESUMO

Self-reactive B lymphocytes contribute to type 1 diabetes pathogenesis as APC and auto-Ab producers in NOD mice and humans. To shed light on the mechanisms responsible for the breakdown in B-lymphocyte self-tolerance to ß-cell Ag, we utilised a model whereby hen-egg lysozyme (HEL)-specific Ig Tg (IgHEL-Tg)-Tg B lymphocytes were allowed to develop in or were transferred into mice expressing the HEL Tg under an insulin promoter (insHEL-Tg). IgHEL-Tg B lymphocytes enhanced type 1 diabetes susceptibility of insHEL-Tg NOD mice. A comparison of the tolerogenic activity of IgHEL-Tg B lymphocytes with NOD and non-autoimmune-prone C57BL/6 genetic backgrounds showed that both were rendered anergic in the presence of insHEL when competing with polyclonal B lymphocytes. Nevertheless, NOD IgHEL-Tg B lymphocytes transferred into insHEL-Tg mice were more readily susceptible to rescue from anergy than their C57BL/6 counterparts, following provision of in vivo T-cell help. The different tolerogenic outcomes were an intrinsic property of B lymphocytes rather than being related to the quality of T-cell help, with the defective response being at least partially controlled by genes mapping to insulin-dependent diabetes (Idd) susceptibility loci on Chromosome 1 (Idd5) and 4 (Idd9/11).


Assuntos
Linfócitos B/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Imunoglobulinas/metabolismo , Células Secretoras de Insulina/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Transferência Adotiva , Animais , Autoantígenos/genética , Autoantígenos/imunologia , Autoantígenos/metabolismo , Linfócitos B/imunologia , Linfócitos B/patologia , Linfócitos B/transplante , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Imunoglobulinas/genética , Imunoglobulinas/imunologia , Insulina/genética , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Muramidase/genética , Muramidase/imunologia , Muramidase/metabolismo , Regiões Promotoras Genéticas/genética , Tolerância a Antígenos Próprios/genética , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/patologia , Transgenes/genética , Quimeras de Transplante
17.
Curr Opin Immunol ; 19(3): 327-36, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17433868

RESUMO

B-cell activation factor from the tumor necrosis factor family (BAFF) is a key survival factor during B-cell maturation -- a delicate immune checkpoint for B cells. Excessive BAFF production at this stage corrupts B-cell tolerance and leads to autoimmunity. Elevated serum BAFF levels have been detected in some patients suffering from various autoimmune conditions. The positive outcomes of currently ongoing clinical trials using BAFF-neutralising agents confirm that this factor plays a major pathological role in rheumatoid arthritis and in systemic lupus erythematosus. Almost a decade after its discovery, BAFF continues to occupy the main stage in Immunology, with more than one hundred BAFF-related articles published per year. In recent years, our understanding of cell signaling and autoimmune mechanisms in this system have seen major advances, refining new possibilities for therapeutic intervention.


Assuntos
Autoimunidade , Fator Ativador de Células B/imunologia , Linfócitos B/imunologia , Modelos Biológicos , Transdução de Sinais/imunologia , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Animais , Fator Ativador de Células B/metabolismo , Linfócitos B/citologia , Linfócitos B/metabolismo , Diferenciação Celular/imunologia , Humanos , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
18.
J Clin Med ; 9(2)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085578

RESUMO

From monoclonal antibodies (mAbs) to Chimeric Antigen Receptor (CAR) T cells, immunotherapies have enhanced the efficacy of treatments against B cell malignancies. The same has not been true for Acute Myeloid Leukemia (AML). Hematologic toxicity has limited the potential of modern immunotherapies for AML at preclinical and clinical levels. Gemtuzumab Ozogamicin has demonstrated hematologic toxicity, but the challenge of preserving normal hematopoiesis has become more apparent with the development of increasingly potent immunotherapies. To date, no single surface molecule has been identified that is able to differentiate AML from Hematopoietic Stem and Progenitor Cells (HSPC). Attempts have been made to spare hematopoiesis by targeting molecules expressed only on later myeloid progenitors as well as AML or using toxins that selectively kill AML over HSPC. Other strategies include targeting aberrantly expressed lymphoid molecules or only targeting monocyte-associated proteins in AML with monocytic differentiation. Recently, some groups have accepted that stem cell transplantation is required to access potent AML immunotherapy and envision it as a rescue to avoid severe hematologic toxicity. Whether it will ever be possible to differentiate AML from HSPC using surface molecules is unclear. Unless true specific AML surface targets are discovered, stem cell transplantation could be required to harness the true potential of immunotherapy in AML.

19.
Clin Transl Immunology ; 9(7): e1156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685149

RESUMO

OBJECTIVES: Effective antibody-drug conjugates (ADCs) provide potent targeted cancer therapies. CD83 is expressed on activated immune cells including B cells and is a therapeutic target for Hodgkin lymphoma. Our objective was to determine CD83 expression on non-Hodgkin lymphoma (NHL) and its therapeutic potential to treat mantle cell lymphoma (MCL) which is currently an incurable NHL. METHODS: We analysed CD83 expression on MCL cell lines and the lymph node/bone marrow biopsies of MCL patients. We tested the killing effect of CD83 ADC in vitro and in an in vivo xenograft MCL mouse model. RESULTS: CD83 is expressed on MCL, and its upregulation is correlated with the nuclear factor κB (NF-κB) activation. CD83 ADC kills MCL in vitro and in vivo. Doxorubicin and cyclophosphamide (CP), which are included in the current treatment regimen for MCL, enhance the NF-κB activity and increase CD83 expression on MCL cell lines. The combination of CD83 ADC with doxorubicin and CP has synergistic killing effect of MCL. CONCLUSION: This study provides evidence that a novel immunotherapeutic agent CD83 ADC, in combination with chemotherapy, has the potential to enhance the efficacy of current treatments for MCL.

20.
Blood Adv ; 4(7): 1206-1216, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32215656

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) significantly reduces the rate of relapse in acute myeloid leukemia (AML) but comes at the cost of significant treatment-related mortality. Despite the reduction in relapse overall, it remains common, especially in high-risk groups. The outcomes for patients who relapse after transplant remains very poor. A large proportion of the morbidity that prevents most patients from accessing allo-HSCT is due to toxic nonspecific conditioning agents that are required to remove recipient hematopoietic stem and progenitor cells (HSPCs), allowing for successful donor engraftment. CD300f is expressed evenly across HSPC subtypes. CD300f has transcription and protein expression equivalent to CD33 on AML. We have developed an anti-CD300f antibody that efficiently internalizes into target cells. We have generated a highly potent anti-CD300f antibody-drug conjugate (ADC) with a pyrrolobenzodiazepine warhead that selectively depletes AML cell lines and colony forming units in vitro. The ADC synergizes with fludarabine, making it a natural combination to use in a minimal toxicity conditioning regimen. Our ADC prolongs the survival of mice engrafted with human cell lines and depletes primary human AML engrafted with a single injection. In a humanized mouse model, a single injection of the ADC depletes CD34+ HSPCs and CD34+CD38-CD90+ hematopoietic stem cells. This work establishes an anti-CD300f ADC as an attractive potential therapeutic that, if validated in transplant models using a larger cohort of primary AML samples, will reduce relapse rate and toxicity for patients with AML undergoing allo-HSCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Animais , Humanos , Leucemia Mieloide Aguda/terapia , Camundongos , Estudos Retrospectivos , Condicionamento Pré-Transplante , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA