Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Neurosci ; 44(28)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38749703

RESUMO

Dysregulation of oligodendrocyte progenitor cell (OPC) recruitment and oligodendrocyte differentiation contribute to failure of remyelination in human demyelinating diseases such as multiple sclerosis (MS). Deletion of muscarinic receptor enhances OPC differentiation and remyelination. However, the role of ligand-dependent signaling versus constitutive receptor activation is unknown. We hypothesized that dysregulated acetylcholine (ACh) release upon demyelination contributes to ligand-mediated activation hindering myelin repair. Following chronic cuprizone (CPZ)-induced demyelination (male and female mice), we observed a 2.5-fold increase in ACh concentration. This increase in ACh concentration could be attributed to increased ACh synthesis or decreased acetylcholinesterase-/butyrylcholinesterase (BChE)-mediated degradation. Using choline acetyltransferase (ChAT) reporter mice, we identified increased ChAT-GFP expression following both lysolecithin and CPZ demyelination. ChAT-GFP expression was upregulated in a subset of injured and uninjured axons following intraspinal lysolecithin-induced demyelination. In CPZ-demyelinated corpus callosum, ChAT-GFP was observed in Gfap+ astrocytes and axons indicating the potential for neuronal and astrocytic ACh release. BChE expression was significantly decreased in the corpus callosum following CPZ demyelination. This decrease was due to the loss of myelinating oligodendrocytes which were the primary source of BChE. To determine the role of ligand-mediated muscarinic signaling following lysolecithin injection, we administered neostigmine, a cholinesterase inhibitor, to artificially raise ACh. We identified a dose-dependent decrease in mature oligodendrocyte density with no effect on OPC recruitment. Together, these results support a functional role of ligand-mediated activation of muscarinic receptors following demyelination and suggest that dysregulation of ACh homeostasis directly contributes to failure of remyelination in MS.


Assuntos
Doenças Desmielinizantes , Oligodendroglia , Transdução de Sinais , Animais , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Camundongos , Oligodendroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Feminino , Masculino , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Camundongos Endogâmicos C57BL , Acetilcolina/metabolismo , Cuprizona/toxicidade , Lisofosfatidilcolinas/toxicidade , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Colina O-Acetiltransferase/metabolismo , Remielinização/fisiologia , Remielinização/efeitos dos fármacos , Bainha de Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos , Camundongos Transgênicos
2.
Brain ; 147(5): 1871-1886, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38128553

RESUMO

Multiple sclerosis is a chronic inflammatory disease in which disability results from the disruption of myelin and axons. During the initial stages of the disease, injured myelin is replaced by mature myelinating oligodendrocytes that differentiate from oligodendrocyte precursor cells. However, myelin repair fails in secondary and chronic progressive stages of the disease and with ageing, as the environment becomes progressively more hostile. This may be attributable to inhibitory molecules in the multiple sclerosis environment including activation of the p38MAPK family of kinases. We explored oligodendrocyte precursor cell differentiation and myelin repair using animals with conditional ablation of p38MAPKγ from oligodendrocyte precursors. We found that p38γMAPK ablation accelerated oligodendrocyte precursor cell differentiation and myelination. This resulted in an increase in both the total number of oligodendrocytes and the migration of progenitors ex vivo and faster remyelination in the cuprizone model of demyelination/remyelination. Consistent with its role as an inhibitor of myelination, p38γMAPK was significantly downregulated as oligodendrocyte precursor cells matured into oligodendrocytes. Notably, p38γMAPK was enriched in multiple sclerosis lesions from patients. Oligodendrocyte progenitors expressed high levels of p38γMAPK in areas of failed remyelination but did not express detectable levels of p38γMAPK in areas where remyelination was apparent. Our data suggest that p38γ could be targeted to improve myelin repair in multiple sclerosis.


Assuntos
Esclerose Múltipla , Bainha de Mielina , Oligodendroglia , Remielinização , Animais , Remielinização/fisiologia , Esclerose Múltipla/patologia , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Camundongos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Humanos , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Proteína Quinase 12 Ativada por Mitógeno/genética , Diferenciação Celular/fisiologia , Cuprizona/toxicidade , Camundongos Endogâmicos C57BL , Masculino , Feminino , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia , Camundongos Transgênicos
3.
Glia ; 71(4): 1018-1035, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36537341

RESUMO

The failure of remyelination in the human CNS contributes to axonal injury and disease progression in multiple sclerosis (MS). In contrast to regions of chronic demyelination in the human brain, remyelination in murine models is preceded by abundant oligodendrocyte progenitor cell (OPC) repopulation, such that OPC density within regions of demyelination far exceeds that of normal white matter (NWM). As such, we hypothesized that efficient OPC repopulation was a prerequisite of successful remyelination, and that increased lesion volume may contribute to the failure of OPC repopulation in human brain. In this study, we characterized the pattern of OPC activation and proliferation following induction of lysolecithin-induced chronic demyelination in adult rabbits. The density of OPCs never exceeded that of NWM and oligodendrocyte density did not recover even at 6 months post-injection. Rabbit OPC recruitment in large lesions was further characterized by chronic Sox2 expression in OPCs located in the lesion core and upregulation of quiescence-associated Prrx1 mRNA at the lesion border. Surprisingly, when small rabbit lesions of equivalent size to mouse were induced, they too exhibited reduced OPC repopulation. However, small lesions were distinct from large lesions as they displayed an almost complete lack of OPC proliferation following demyelination. These differences in the response to demyelination suggest that both volume dependent and species-specific mechanisms are critical in the regulation of OPC proliferation and lesion repopulation and suggest that alternate models will be necessary to fully understand the mechanisms that contribute to failed remyelination in MS.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Células Precursoras de Oligodendrócitos , Animais , Coelhos , Diferenciação Celular/fisiologia , Doenças Desmielinizantes/patologia , Proteínas de Homeodomínio/metabolismo , Esclerose Múltipla/patologia , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Regeneração Nervosa/fisiologia , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Células-Tronco/metabolismo , Modelos Animais de Doenças
4.
J Neurosci ; 41(10): 2245-2263, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33472827

RESUMO

The proinflammatory cytokine IFN-γ, which is chronically elevated in multiple sclerosis, induces pathologic quiescence in human oligodendrocyte progenitor cells (OPCs) via upregulation of the transcription factor PRRX1. In this study using animals of both sexes, we investigated the role of heparan sulfate proteoglycans in the modulation of IFN-γ signaling following demyelination. We found that IFN-γ profoundly impaired OPC proliferation and recruitment following adult spinal cord demyelination. IFN-γ-induced quiescence was mediated by direct signaling in OPCs as conditional genetic ablation of IFNγR1 (Ifngr1) in adult NG2+ OPCs completely abrogated these inhibitory effects. Intriguingly, OPC-specific IFN-γ signaling contributed to failed oligodendrocyte differentiation, which was associated with hyperactive Wnt/Bmp target gene expression in OPCs. We found that PI-88, a heparan sulfate mimetic, directly antagonized IFN-γ to rescue human OPC proliferation and differentiation in vitro and blocked the IFN-γ-mediated inhibitory effects on OPC recruitment in vivo Importantly, heparanase modulation by PI-88 or OGT2155 in demyelinated lesions rescued IFN-γ-mediated axonal damage and demyelination. In addition to OPC-specific effects, IFN-γ-augmented lesions were characterized by increased size, reactive astrogliosis, and proinflammatory microglial/macrophage activation along with exacerbated axonal injury and cell death. Heparanase inhibitor treatment rescued many of the negative IFN-γ-induced sequelae suggesting a profound modulation of the lesion environment. Together, these results suggest that the modulation of the heparanome represents a rational approach to mitigate the negative effects of proinflammatory signaling and rescuing pathologic quiescence in the inflamed and demyelinated human brain.SIGNIFICANCE STATEMENT The failure of remyelination in multiple sclerosis contributes to neurologic dysfunction and neurodegeneration. The activation and proliferation of oligodendrocyte progenitor cells (OPCs) is a necessary step in the recruitment phase of remyelination. Here, we show that the proinflammatory cytokine interferon-γ directly acts on OPCs to induce pathologic quiescence and thereby limit recruitment following demyelination. Heparan sulfate is a highly structured sulfated carbohydrate polymer that is present on the cell surface and regulates several aspects of the signaling microenvironment. We find that pathologic interferon-γ can be blocked by modulation of the heparanome following demyelination using either a heparan mimetic or by treatment with heparanase inhibitor. These studies establish the potential for modulation of heparanome as a regenerative approach in demyelinating disease.


Assuntos
Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Interferon gama/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Knockout
5.
J Neurosci ; 38(31): 6921-6932, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29959237

RESUMO

Muscarinic receptor antagonists act as potent inducers of oligodendrocyte differentiation and accelerate remyelination. However, the use of muscarinic antagonists in the clinic is limited by poor understanding of the operant receptor subtype, and questions regarding possible species differences between rodents and humans. Based on high selective expression in human oligodendrocyte progenitor cells (OPCs), we hypothesized that M3R is the functionally relevant receptor. Lentiviral M3R knockdown in human primary CD140a/PDGFαR+ OPCs resulted in enhanced differentiation in vitro and substantially reduced the calcium response following muscarinic agonist treatment. Importantly, following transplantation in hypomyelinating shiverer/rag2 mice, M3R knockdown improved remyelination by human OPCs. Furthermore, conditional M3R ablation in adult NG2-expressing OPCs increased oligodendrocyte differentiation and led to improved spontaneous remyelination in mice. Together, we demonstrate that M3R receptor mediates muscarinic signaling in human OPCs that act to delay differentiation and remyelination, suggesting that M3 receptors are viable targets for human demyelinating disease.SIGNIFICANCE STATEMENT The identification of drug targets aimed at improving remyelination in patients with demyelination disease is a key step in development of effective regenerative therapies to treat diseases, such as multiple sclerosis. Muscarinic receptor antagonists have been identified as effective potentiators of remyelination, but the receptor subtypes that mediate these receptors are unclear. In this study, we show that genetic M3R ablation in both mouse and human cells results in improved remyelination and is mediated by acceleration of oligodendrocyte commitment from oligodendrocyte progenitor cells. Therefore, M3R represents an attractive target for induced remyelination in human disease.


Assuntos
Bainha de Mielina/fisiologia , Neurogênese/fisiologia , Células Precursoras de Oligodendrócitos/fisiologia , Receptor Muscarínico M3/fisiologia , Remielinização/fisiologia , Animais , Transplante de Tecido Encefálico , Sinalização do Cálcio , Células Cultivadas , Transplante de Tecido Fetal , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Mutantes Neurológicos , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Prosencéfalo/embriologia , Prosencéfalo/transplante , Interferência de RNA , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/antagonistas & inibidores , Medula Espinal/química , Medula Espinal/ultraestrutura
6.
Proc Natl Acad Sci U S A ; 111(28): E2885-94, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24982138

RESUMO

Human oligodendrocyte progenitor cell (OPC) specification and differentiation occurs slowly and limits the potential for cell-based treatment of demyelinating disease. In this study, using FACS-based isolation and microarray analysis, we identified a set of transcription factors expressed by human primary CD140a(+)O4(+) OPCs relative to CD133(+)CD140a(-) neural stem/progenitor cells (NPCs). Among these, lentiviral overexpression of transcription factors ASCL1, SOX10, and NKX2.2 in NPCs was sufficient to induce Sox10 enhancer activity, OPC mRNA, and protein expression consistent with OPC fate; however, unlike ASCL1 and NKX2.2, only the transcriptome of SOX10-infected NPCs was induced to a human OPC gene expression signature. Furthermore, only SOX10 promoted oligodendrocyte commitment, and did so at quantitatively equivalent levels to native OPCs. In xenografts of shiverer/rag2 animals, SOX10 increased the rate of mature oligodendrocyte differentiation and axon ensheathment. Thus, SOX10 appears to be the principle and rate-limiting regulator of myelinogenic fate from human NPCs.


Assuntos
Diferenciação Celular , Regulação da Expressão Gênica , Células-Tronco Neurais/metabolismo , Oligodendroglia/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Elementos Facilitadores Genéticos , Xenoenxertos , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Humanos , Lentivirus , Camundongos , Células-Tronco Neurais/citologia , Proteínas Nucleares , Oligodendroglia/citologia , Transplante de Células-Tronco , Fatores de Transcrição/genética , Transcriptoma , Transdução Genética
7.
J Neurosci ; 35(8): 3676-88, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25716865

RESUMO

Therapeutic repair of myelin disorders may be limited by the relatively slow rate of human oligodendrocyte differentiation. To identify appropriate pharmacological targets with which to accelerate differentiation of human oligodendrocyte progenitors (hOPCs) directly, we used CD140a/O4-based FACS of human forebrain and microarray to hOPC-specific receptors. Among these, we identified CHRM3, a M3R muscarinic acetylcholine receptor, as being restricted to oligodendrocyte-biased CD140a(+)O4(+) cells. Muscarinic agonist treatment of hOPCs resulted in a specific and dose-dependent blockade of oligodendrocyte commitment. Conversely, when hOPCs were cocultured with human neurons, M3R antagonist treatment stimulated oligodendrocytic differentiation. Systemic treatment with solifenacin, an FDA-approved muscarinic receptor antagonist, increased oligodendrocyte differentiation of transplanted hOPCs in hypomyelinated shiverer/rag2 brain. Importantly, solifenacin treatment of engrafted animals reduced auditory brainstem response interpeak latency, indicative of increased conduction velocity and thereby enhanced functional repair. Therefore, solifenacin and other selective muscarinic antagonists represent new adjunct approaches to accelerate repair by engrafted human progenitors.


Assuntos
Células-Tronco Fetais/citologia , Antagonistas Muscarínicos/farmacologia , Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Quinuclidinas/farmacologia , Regeneração , Tetra-Hidroisoquinolinas/farmacologia , Animais , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA/genética , Potenciais Evocados Auditivos do Tronco Encefálico , Feminino , Células-Tronco Fetais/efeitos dos fármacos , Células-Tronco Fetais/metabolismo , Células-Tronco Fetais/transplante , Humanos , Masculino , Camundongos , Agonistas Muscarínicos/farmacologia , Bainha de Mielina/genética , Neurogênese , Antígenos O/genética , Antígenos O/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/transplante , Prosencéfalo/citologia , Prosencéfalo/embriologia , Receptor Muscarínico M3 , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores Muscarínicos/genética , Receptores Muscarínicos/metabolismo , Succinato de Solifenacina
8.
Brain ; 136(Pt 1): 209-22, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23365098

RESUMO

Vanishing white matter disease is a genetic leukoencephalopathy caused by mutations in eukaryotic translation initiation factor 2B. Patients experience a slowly progressive neurological deterioration with episodes of rapid clinical worsening triggered by stress. The disease may occur at any age and leads to early death. Characteristic neuropathological findings include cystic degeneration of the white matter with feeble, if any, reactive gliosis, dysmorphic astrocytes and paucity of myelin despite an increase in oligodendrocytic density. These features have been linked to a maturation defect of astrocytes and oligodendrocytes. However, the nature of the link between glial immaturity and the observed neuropathological features is unclear. We hypothesized that the defects in maturation and function of astrocytes and oligodendrocytes are related. Brain tissue of seven patients with genetically proven vanishing white matter disease was investigated using immunohistochemistry, western blotting, quantitative polymerase chain reaction and size exclusion chromatography. The results were compared with those obtained from normal brain tissue of age-matched controls, from chronic demyelinated multiple sclerosis lesions and from other genetic and acquired white matter disorders. We found that the white matter of patients with vanishing white matter disease is enriched in CD44-expressing astrocyte precursor cells and accumulates the glycosaminoglycan hyaluronan. Hyaluronan is a major component of the extracellular matrix, and CD44 is a hyaluronan receptor. We found that a high molecular weight form of hyaluronan is overabundant, especially in the most severely affected areas. Comparison between the more severely affected frontal white matter and the relatively spared cerebellum confirms that high molecular weight hyaluronan accumulation is more pronounced in the frontal white matter than in the cerebellum. High molecular weight hyaluronan is known to inhibit astrocyte and oligodendrocyte precursor maturation and can explain the arrested glial progenitor maturation observed in vanishing white matter disease. In conclusion, high molecular weight species of hyaluronan accumulate in the white matter of patients with vanishing white matter disease, and by inhibiting glial maturation and proper function, they may be a major determinant of the white matter pathology and lack of repair.


Assuntos
Encéfalo/metabolismo , Ácido Hialurônico/metabolismo , Leucoencefalopatias/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Oligodendroglia/metabolismo , Adolescente , Adulto , Idoso , Encéfalo/patologia , Diferenciação Celular , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Leucoencefalopatias/patologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Fibras Nervosas Mielinizadas/patologia , Oligodendroglia/patologia
9.
Sci Adv ; 10(28): eadk9918, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996029

RESUMO

Cell therapy for the treatment of demyelinating diseases such as multiple sclerosis is hampered by poor survival of donor oligodendrocyte cell preparations, resulting in limited therapeutic outcomes. Excessive cell death leads to the release of intracellular alloantigens, which likely exacerbate local inflammation and may predispose the graft to eventual rejection. Here, we engineered innovative cell-instructive shear-thinning hydrogels (STHs) with tunable viscoelasticity and bioactivity for minimally invasive delivery of primary human oligodendrocyte progenitor cells (hOPCs) to the brain of a shiverer/rag2 mouse, a model of congenital hypomyelinating disease. The STHs enabled immobilization of prosurvival signals, including a recombinantly designed bidomain peptide and platelet-derived growth factor. Notably, STHs reduced the death rate of hOPCs significantly, promoted the production of myelinating oligodendrocytes, and enhanced myelination of the mouse brain 12 weeks post-implantation. Our results demonstrate the potential of STHs loaded with biological cues to improve cell therapies for the treatment of devastating myelopathies.


Assuntos
Sobrevivência Celular , Hidrogéis , Células Precursoras de Oligodendrócitos , Remielinização , Animais , Hidrogéis/química , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/citologia , Camundongos , Humanos , Sistema Nervoso Central/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/citologia , Bainha de Mielina/metabolismo , Modelos Animais de Doenças
10.
J Neurosci ; 32(43): 15066-75, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23100427

RESUMO

Oligodendrocyte progenitor cells (OPCs) persist in human white matter, yet the mechanisms by which they are maintained in an undifferentiated state are unknown. Human OPCs differentially express protein tyrosine phosphatase receptor ß/ζ (PTPRZ1) and its inhibitory ligand, pleiotrophin, suggesting the maintenance of an autocrine loop by which PTPRZ1 activity is tonically suppressed. PTPRZ1 constitutively promotes the tyrosine dephosphorylation of ß-catenin and, thus, ß-catenin participation in T cell factor (TCF)-mediated transcription. Using CD140a/PDGFRα-based fluorescence-activated cell sorting to isolate fetal OPCs from the fetal brain at gestational ages 16-22 weeks, we asked whether pleiotrophin modulated the expansion of OPCs and, if so, whether this was effected through the serial engagement of PTPRZ1 and ß-catenin-dependent signals, such as TCF-mediated transcription. Lentiviral shRNAi knockdown of PTPRZ1 induced TCF-mediated transcription and substantially augmented GSK3ß inhibition-induced TCF-reporter luciferase expression, suggesting dual regulation of ß-catenin and the importance of PTPRZ1 as a tonic brake upon TCF-dependent transcription. Pharmacological inhibition of GSK3ß triggered substrate detachment and initiated sphere formation, yet had no effect on either proliferation or net cell number. In contrast, pleiotrophin strongly potentiated the proliferation of CD140a(+)-sorted OPCs, as did PTPRZ1 knockdown, which significantly increased the total number of population doublings exhibited by OPCs before mitotic senescence. These observations suggest that pleiotrophin inhibition of PTPRZ1 contributes to the homeostatic self-renewal of OPCs and that this process is mediated by the tonic activation of ß-catenin/TCF-dependent transcription.


Assuntos
Proteínas de Transporte/farmacologia , Citocinas/farmacologia , Oligodendroglia/efeitos dos fármacos , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Células-Tronco/efeitos dos fármacos , Análise de Variância , Encéfalo/citologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citarabina/farmacologia , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Inibidores Enzimáticos/farmacologia , Feto , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Imunossupressores/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição TCF/metabolismo , Tirosina/metabolismo , beta Catenina/metabolismo
11.
Am J Physiol Cell Physiol ; 305(8): C854-66, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23885059

RESUMO

Flow impingement at arterial bifurcations causes high frictional force [or wall shear stress (WSS)], and flow acceleration and deceleration in the branches create positive and negative streamwise gradients in WSS (WSSG), respectively. Intracranial aneurysms tend to form in regions with high WSS and positive WSSG. However, little is known about the responses of endothelial cells (ECs) to either positive or negative WSSG under high WSS conditions. We used cDNA microarrays to profile gene expression in cultured ECs exposed to positive or negative WSSG for 24 h in a flow chamber where WSS varied between 3.5 and 28.4 Pa. Gene ontology and biological pathway analysis indicated that positive WSSG favored proliferation, apoptosis, and extracellular matrix processing while decreasing expression of proinflammatory genes. To determine if similar responses occur in vivo, we examined EC proliferation and expression of the matrix metalloproteinase ADAMTS1 under high WSS and WSSG created at the basilar terminus of rabbits after bilateral carotid ligation. Precise hemodynamic conditions were determined by computational fluid dynamic simulations from three-dimensional angiography and mapped on immunofluorescence staining for the proliferation marker Ki-67 and ADAMTS1. Both proliferation and ADAMTS1 were significantly higher in ECs under positive WSSG than in adjacent regions of negative WSSG. Our results indicate that WSSG elicits distinct EC gene expression profiles and particular biological pathways including increased cell proliferation and matrix processing. Such EC responses may be important in understanding the mechanisms of intracranial aneurysm initiation at regions of high WSS and positive WSSG.


Assuntos
Proteínas ADAM/biossíntese , Células Endoteliais/metabolismo , Hemodinâmica , Antígeno Ki-67/biossíntese , Estresse Mecânico , Animais , Aorta , Apoptose , Bovinos , Linhagem Celular , Proliferação de Células , Feminino , Expressão Gênica , Aneurisma Intracraniano/metabolismo , Modelos Cardiovasculares , Coelhos , Fluxo Sanguíneo Regional , Resistência ao Cisalhamento , Estresse Fisiológico
12.
Am J Physiol Cell Physiol ; 302(8): C1109-18, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22173868

RESUMO

Chronic high flow can induce arterial remodeling, and this effect is mediated by endothelial cells (ECs) responding to wall shear stress (WSS). To assess how WSS above physiological normal levels affects ECs, we used DNA microarrays to profile EC gene expression under various flow conditions. Cultured bovine aortic ECs were exposed to no-flow (0 Pa), normal WSS (2 Pa), and very high WSS (10 Pa) for 24 h. Very high WSS induced a distinct expression profile compared with both no-flow and normal WSS. Gene ontology and biological pathway analysis revealed that high WSS modulated gene expression in ways that promote an anti-coagulant, anti-inflammatory, proliferative, and promatrix remodeling phenotype. A subset of characteristic genes was validated using quantitative polymerase chain reaction: very high WSS upregulated ADAMTS1 (a disintegrin and metalloproteinase with thrombospondin motif-1), PLAU (urokinase plasminogen activator), PLAT (tissue plasminogen activator), and TIMP3, all of which are involved in extracellular matrix processing, with PLAT and PLAU also contributing to fibrinolysis. Downregulated genes included CXCL5 and IL-8 and the adhesive glycoprotein THBS1 (thrombospondin-1). Expressions of ADAMTS1 and uPA proteins were assessed by immunhistochemistry in rabbit basilar arteries experiencing increased flow after bilateral carotid artery ligation. Both proteins were significantly increased when WSS was elevated compared with sham control animals. Our results indicate that very high WSS elicits a unique transcriptional profile in ECs that favors particular cell functions and pathways that are important in vessel homeostasis under increased flow. In addition, we identify specific molecular targets that are likely to contribute to adaptive remodeling under elevated flow conditions.


Assuntos
Artéria Basilar/metabolismo , Artéria Basilar/fisiologia , Células Endoteliais/fisiologia , Animais , Transtornos da Coagulação Sanguínea/genética , Transtornos da Coagulação Sanguínea/metabolismo , Bovinos , Proliferação de Células , Células Cultivadas , Células Endoteliais/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Feminino , Fibrinólise/genética , Fibrinólise/fisiologia , Expressão Gênica , Perfilação da Expressão Gênica/métodos , Inflamação/genética , Inflamação/metabolismo , Metaloendopeptidases/metabolismo , Coelhos , Resistência ao Cisalhamento , Estresse Mecânico
13.
Glia ; 60(12): 1944-53, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22927334

RESUMO

The molecular mechanisms controlling human oligodendrocyte development are poorly characterized. Microarray analysis of human oligodendrocyte progenitor cells (OPCs) and immature oligodendrocytes revealed that specific-class I histone deacetylase (HDAC) target genes were actively repressed during oligodendrocyte commitment. Although epigenetic regulation of oligodendrocyte differentiation has been established in rodent development, the role of HDACs in human OPCs remains undefined. We used HDAC inhibitors (HDACi) trichostatin A (TSA) and sodium butyrate to determine the importance of HDAC activity in human primary OPC differentiation. Treatment with either drug resulted in significant dose-dependent inhibition of O4(+) oligodendrocyte cell differentiation, reduction of oligodendrocyte morphological maturation, and downregulation of myelin basic protein mRNA. High dose TSA treatment was also associated with reduction in OPC proliferation. HDACi treatment prevented downregulation of SOX2, ID4, and TCF7L2 mRNAs but did not regulate HES5, suggesting that targets of HDAC repression may differ between species. These results predict that HDACi treatment would impair proliferation and differentiation by parenchymal oligodendrocyte progenitors, and thereby degrade their potential for endogenous repair in human demyelinating disease. © 2012 Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/enzimologia , Inibidores de Histona Desacetilases , Histona Desacetilases/metabolismo , Oligodendroglia/enzimologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Feto/citologia , Feto/efeitos dos fármacos , Feto/enzimologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/fisiologia , Humanos , Oligodendroglia/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Células-Tronco/efeitos dos fármacos , Células-Tronco/enzimologia
14.
Sci Rep ; 12(1): 6160, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418597

RESUMO

Endogenous remyelination in demyelinating diseases such as multiple sclerosis is contingent upon the successful differentiation of oligodendrocyte progenitor cells (OPCs). Signaling via the Gαq-coupled muscarinic receptor (M1/3R) inhibits human OPC differentiation and impairs endogenous remyelination in experimental models. We hypothesized that calcium release following Gαq-coupled receptor (GqR) activation directly regulates human OPC (hOPC) cell fate. In this study, we show that specific GqR agonists activating muscarinic and metabotropic glutamate receptors induce characteristic oscillatory calcium release in hOPCs and that these agonists similarly block hOPC maturation in vitro. Both agonists induce calcium release from endoplasmic reticulum (ER) stores and store operated calcium entry (SOCE) likely via STIM/ORAI-based channels. siRNA mediated knockdown (KD) of obligate calcium sensors STIM1 and STIM2 decreased the magnitude of muscarinic agonist induced oscillatory calcium release and attenuated SOCE in hOPCs. In addition, STIM2 expression was necessary to maintain the frequency of calcium oscillations and STIM2 KD reduced spontaneous OPC differentiation. Furthermore, STIM2 siRNA prevented the effects of muscarinic agonist treatment on OPC differentiation suggesting that SOCE is necessary for the anti-differentiative action of muscarinic receptor-dependent signaling. Finally, using a gain-of-function approach with an optogenetic STIM lentivirus, we demonstrate that independent activation of SOCE was sufficient to significantly block hOPC differentiation and this occurred in a frequency dependent manner while increasing hOPC proliferation. These findings suggest that intracellular calcium oscillations directly regulate hOPC fate and that modulation of calcium oscillation frequency may overcome inhibitory Gαq-coupled signaling that impairs myelin repair.


Assuntos
Sinalização do Cálcio , Células Precursoras de Oligodendrócitos , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio da Dieta/metabolismo , Humanos , Agonistas Muscarínicos/farmacologia , Proteína ORAI1/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Molécula 2 de Interação Estromal/metabolismo
15.
Psychopharmacology (Berl) ; 239(11): 3539-3550, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36098762

RESUMO

Chronic pain can be a debilitating condition, leading to profound changes in nearly every aspect of life. However, the reliance on opioids such as oxycodone for pain management is thought to initiate dependence and addiction liability. The neurobiological intersection at which opioids relieve pain and possibly transition to addiction is poorly understood. Using RNA sequencing pathway analysis in rats with complete Freund's adjuvant (CFA)-induced chronic inflammation, we found that the transcriptional signatures in the medial prefrontal cortex (mPFC; a brain region where pain and reward signals integrate) elicited by CFA in combination with oxycodone differed from those elicited by CFA or oxycodone alone. However, the expression of Egr3 was augmented in all animals receiving oxycodone. Furthermore, virus-mediated overexpression of EGR3 in the mPFC increased mechanical pain relief but not the affective aspect of pain in animals receiving oxycodone, whereas pharmacological inhibition of EGR3 via NFAT attenuated mechanical pain relief. Egr3 overexpression also increased the motivation to obtain oxycodone infusions in a progressive ratio test without altering the acquisition or maintenance of oxycodone self-administration. Taken together, these data suggest that EGR3 in the mPFC is at the intersection of nociceptive and addictive-like behaviors.


Assuntos
Analgésicos Opioides , Dor Crônica , Ratos , Animais , Masculino , Analgésicos Opioides/farmacologia , Oxicodona/farmacologia , Nociceptividade , Motivação , Adjuvante de Freund , Proteína 3 de Resposta de Crescimento Precoce
16.
J Neurosci ; 30(44): 14635-48, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-21048121

RESUMO

Sox2 is expressed by neural stem and progenitor cells, and a sox2 enhancer identifies these cells in the forebrains of both fetal and adult transgenic mouse reporters. We found that an adenovirus encoding EGFP placed under the regulatory control of a 0.4 kb sox2 core enhancer selectively identified multipotential and self-renewing neural progenitor cells in dissociates of human fetal forebrain. Upon EGFP-based fluorescence-activated cell sorting (FACS), the E/sox2:EGFP(+) isolates were propagable for up to 1 year in vitro, and remained multilineage competent throughout. E/sox2:EGFP(+) cells expressed more telomerase enzymatic activity than matched E/sox2:EGFP-depleted populations, and maintained their telomeric lengths with successive passage. Gene expression analysis of E/sox2:EGFP-sorted neural progenitor cells, normalized to the unsorted forebrain dissociates from which they derived, revealed marked overexpression of genes within the notch and wnt pathways, and identified multiple elements of each pathway that appear selective to human neural progenitors. Sox2 enhancer-based FACS thus permits the prospective identification and direct isolation of a telomerase-active population of neural stem cells from the human fetal forebrain, and the elucidation of both the transcriptome and dominant signaling pathways of these critically important cells.


Assuntos
Células-Tronco Embrionárias/citologia , Elementos Facilitadores Genéticos/genética , Citometria de Fluxo/métodos , Células-Tronco Neurais/citologia , Fatores de Transcrição SOXB1/genética , Telomerase/biossíntese , Linhagem da Célula/genética , Separação Celular/métodos , Células Cultivadas , Células-Tronco Embrionárias/classificação , Células-Tronco Embrionárias/enzimologia , Feto , Humanos , Células-Tronco Neurais/classificação , Células-Tronco Neurais/enzimologia , Estudos Prospectivos , Telomerase/genética
17.
J Neurooncol ; 103(2): 277-85, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20853018

RESUMO

TGF-ß receptors (TGF-ßRs) inhibit growth of many cell types. Loss of TGF-ßRs or its signaling components have been found in several human malignancies. The expression and the role of TGF-ßRs in regulating anaplastic meningioma growth has not been studied. Real time PCR found TGF-ß RIII expression significantly lower in five grade III compared to eight grade I and eight grade II tumors (P = 0.0481). By western blot analysis, TGF-ßRI was detected in the four fetal and adult leptomeninges, all 18 grade I, 14 grade II and six grade III meningiomas. TGF-ßRII was detected in none of the leptomeninges, 55% of grade I, 71% of grade II and weak to negative in five of six the grade III meningiomas analyzed. TGF-ßRIII immunoreactivity was not detected in the fetal meninges but was detected in 94% of grade I, 70% of grade II and 67% grade III tumors. Phospho-SMAD 3 and Smad 7 were detected in nearly all tumors. TGF-ß1 had no effect on PDGF-BB stimulation of DNA synthesis in six of seven WHO grade II and the grade III cells. It produced an increase in phosphorylation of SMAD 3 and p38MAPK in two of four and p44/42MAPK in three of four grade II cells showing no change in DNA synthesis after treatment. Thus, only attenuated TGF-ßRIII expression and TGFB growth inhibition may occur in select higher grade meningiomas. Nonetheless, restoring TGF-ß inhibition of meningioma cell proliferation may be an important objective in the design of new chemotherapies for these tumors.


Assuntos
Neoplasias Meníngeas/metabolismo , Meningioma/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/biossíntese , Transdução de Sinais/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Feminino , Humanos , Masculino , Neoplasias Meníngeas/patologia , Meningioma/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Nat Commun ; 12(1): 1923, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772011

RESUMO

Chronic demyelination in the human CNS is characterized by an inhibitory microenvironment that impairs recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) leading to failed remyelination and axonal atrophy. By network-based transcriptomics, we identified sulfatase 2 (Sulf2) mRNA in activated human primary OPCs. Sulf2, an extracellular endosulfatase, modulates the signaling microenvironment by editing the pattern of sulfation on heparan sulfate proteoglycans. We found that Sulf2 was increased in demyelinating lesions in multiple sclerosis and was actively secreted by human OPCs. In experimental demyelination, elevated OPC Sulf1/2 expression directly impaired progenitor recruitment and subsequent generation of oligodendrocytes thereby limiting remyelination. Sulf1/2 potentiates the inhibitory microenvironment by promoting BMP and WNT signaling in OPCs. Importantly, pharmacological sulfatase inhibition using PI-88 accelerated oligodendrocyte recruitment and remyelination by blocking OPC-expressed sulfatases. Our findings define an important inhibitory role of Sulf1/2 and highlight the potential for modulation of the heparanome in the treatment of chronic demyelinating disease.


Assuntos
Diferenciação Celular/genética , Microambiente Celular/genética , Doenças Desmielinizantes/genética , Perfilação da Expressão Gênica/métodos , Células Precursoras de Oligodendrócitos/metabolismo , Remielinização/genética , Animais , Axônios/metabolismo , Células Cultivadas , Doenças Desmielinizantes/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Células Precursoras de Oligodendrócitos/citologia , Sulfatases/genética , Sulfatases/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo
19.
J Am Soc Mass Spectrom ; 31(12): 2462-2468, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32926612

RESUMO

Destruction of myelin, or demyelination, is a characteristic of traumatic spinal cord injury and pathognomonic for primary demyelinating pathologies such as multiple sclerosis (MS). The regenerative process known as remyelination, which can occur following demyelination, fails as MS progresses. Models of focal demyelination by local injection of gliotoxins have provided important biological insights into the demyelination/remyelination process. Here, injection of lysolecithin to induce spinal cord demyelination is investigated using matrix-assisted laser desorption/ionization mass spectrometry imaging. A segmentation analysis revealed changes to the lipid composition during lysolecithin-induced demyelination at the lesion site and subsequent remyelination over time. The results of this study can be utilized to identify potential myelin-repair mechanisms and in the design of therapeutic strategies to enhance myelin repair.


Assuntos
Doenças Desmielinizantes/patologia , Bainha de Mielina/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Medula Espinal/patologia , Animais , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Feminino , Lipídeos/análise , Lisofosfatidilcolinas/efeitos adversos , Camundongos Endogâmicos BALB C , Bainha de Mielina/química , Remielinização , Medula Espinal/química
20.
Cell Rep ; 29(4): 904-919.e9, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31644912

RESUMO

Remyelination requires the generation of new oligodendrocytes (OLs), which are derived from oligodendrocyte progenitor cells (OPCs). Maturation of OPCs into OLs is a multi-step process. Here, we describe a microRNA expressed by OLs, miR-27a, as a regulator of OL development and survival. Increased levels of miR-27a were found in OPCs associated with multiple sclerosis (MS) lesions and in animal models of demyelination. Increased levels of miR-27a led to inhibition of OPC proliferation by cell-cycle arrest, as well as impaired differentiation of human OPCs (hOPCs) and myelination by dysregulating the Wnt-ß-catenin signaling pathway. In vivo administration of miR-27a led to suppression of myelinogenic signals, leading to loss of endogenous myelination and remyelination. Our findings provide evidence supporting a critical role for a steady-state level of OL-specific miR-27a in supporting multiple steps in the complex process of OPC maturation and remyelination.


Assuntos
Encéfalo/metabolismo , MicroRNAs/metabolismo , Bainha de Mielina/metabolismo , Animais , Encéfalo/citologia , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Neurogênese , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA