Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
BMC Plant Biol ; 24(1): 717, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39069632

RESUMO

BACKGROUND: Sclerotinia spp. are generalist fungal pathogens, infecting over 700 plant hosts worldwide, including major crops. While host resistance is the most sustainable and cost-effective method for disease management, complete resistance to Sclerotinia diseases is rare. We recently identified soft basal stem as a potential susceptibility factor to Sclerotinia minor infection in lettuce (Lactuca sativa) under greenhouse conditions. RESULTS: Analysis of stem and root cell wall composition in five L. sativa and one L. serriola accessions with varying growth habits and S. minor resistance levels revealed strong association between hemicellulose constituents, lignin polymers, disease phenotypes, and basal stem mechanical strength. Accessions resistant to basal stem degradation consistently exhibited higher levels of syringyl, guaiacyl, and xylose, but lower levels of fucose in stems. These findings suggest that stem cell wall polymers recalcitrant to breakdown by lignocellulolytic enzymes may contribute to stem strength-mediated resistance against S. minor. CONCLUSIONS: The lignin content, particularly guaiacyl and syringyl, along with xylose could potentially serve as biomarkers for identifying more resistant lettuce accessions and breeding lines. Basal stem degradation by S. minor was influenced by localized microenvironment conditions around the stem base of the plants.


Assuntos
Ascomicetos , Parede Celular , Resistência à Doença , Lactuca , Lignina , Doenças das Plantas , Caules de Planta , Caules de Planta/microbiologia , Caules de Planta/metabolismo , Parede Celular/metabolismo , Lactuca/microbiologia , Lactuca/metabolismo , Ascomicetos/fisiologia , Lignina/metabolismo , Doenças das Plantas/microbiologia , Polissacarídeos/metabolismo , Microambiente Celular , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo
2.
Plant Dis ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352509

RESUMO

Bacterial leaf spot (BLS) of lettuce (Lactuca sativa L.) is caused by the bacterium Xanthomonas hortorum pv. vitians which is hypothesized to have at least three races of the pathogen present in North America as defined by their differential resistance phenotypes in lettuce cultivars/accessions. Though resistance to X. hortorum pv. vitians race 1 has been identified in cultivated lettuce, numerous other X. hortorum pv. vitians strains cause disease on cultivars carrying this resistance locus. Thus far, resistance to these 'additional' X. hortorum pv. vitians strains has not been adequately described in L. sativa or in any other wild Lactuca species sexually compatible with cultivated lettuce. We have performed an extensive screening of approximately 500 Lactuca accessions from L. sativa, L. serriola, L. saligna, L. virosa, L. aculeata, L. altaica, and L. perennis species to identify accessions resistant to these additional X. hortorum pv. vitians races. Following the initial screenings, greenhouse tests confirmed that X. hortorum pv. vitians race 2 and race 3 could be defined using Lactuca sativa accessions. Race 2 strain BS3217 had an incompatible response (hypersensitive response) on ten Lactuca serriola accessions including PI491114 and PI491108, while race 1 (BS0347) and race 3 (BS2861) strains of X. hortorum pv. vitians showed a compatible response (disease) on these genotypes. L. serriola accession ARM09-161 (and selections derived from it) was the only genotype resistant to the race 3 strain BS2861. L. serriola accessions identified in this study to be resistant to race 2 and race 3 of X. hortorum pv. vitians, together with race 1 resistant cultivars, can be used for pyramiding resistance loci against the three races of the BLS-causing pathogen.

3.
Plant Dis ; 108(7): 2170-2180, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38506911

RESUMO

Verticillium wilt, caused by Verticillium dahliae, is one of the most devastating soilborne diseases of lettuce (Lactuca sativa L.). There are three races of V. dahliae, and each race has been characterized by markers representing race-specific effectors. Race 1 is differentiated by the presence of the functional secretory Ave1 effector. Similarly, races 2 and 3 are differentiated by effectors VdR2e and VdR3e, respectively. Although the presence of race 1 in coastal California was well established, the presence of effector-based races 2 and 3 was uncertain. This study therefore focused on characterizing 727 isolates collected from 142 ranches of symptomatic lettuce and other crops from coastal California. Based on this evaluation, 523 isolates were designated as race 1, 20 isolates as race 2, 23 isolates as race 3, and 17 as race undefined. Isolates representing other Verticillium species totaled 110, and 34 were non-Verticillium fungal species. Because the use of resistant cultivars is a key strategy to manage this disease, we evaluated 48 lettuce germplasm lines and 1 endive (Cichorium endivia L.) line, comprising commercial cultivars and breeding lines, including the race 1-resistant heirloom cultivar La Brillante and the susceptible cultivar Salinas as controls. Resistance against races 1, 2, and 3 along with VdLs17, a virulent isolate of V. dahliae from lettuce that is currently not assigned to a race, was evaluated in replicated greenhouse experiments. Two crisphead lettuce lines, HL28 and HL29, exhibited resistance against race 1 and a partial resistance against race 2, whereas all other lines were highly susceptible to races 1 and 2 and VdLs17. The majority of lines exhibited higher resistance to race 3 relative to the other two races. This study documents the current distribution of the different races in coastal California. In addition, the sources of resistance currently being developed should be effective or partially effective against these races for targeted deployment as soon as they are available.


Assuntos
Ascomicetos , Resistência à Doença , Lactuca , Doenças das Plantas , Lactuca/microbiologia , California , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Ascomicetos/genética , Ascomicetos/fisiologia , Verticillium
4.
Theor Appl Genet ; 136(9): 180, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548768

RESUMO

KEY MESSAGE: GWAS identified 19 QTLs for resistance to Sclerotinia minor, 11 of them co-locating with red leaf color. Lower disease incidence was observed in red and dark red accessions. Lettuce (Lactuca sativa L.), one of the most economically important vegetables grown primarily in moderate climates around the world, is susceptible to many diseases including lettuce drop caused by the soilborne fungus Sclerotinia minor. Complete resistance to S. minor has not been identified in cultivated lettuce or its wild relatives. We conducted five experiments over 4 years with the diversity panel of almost 500 lettuce accessions to evaluate their response to the pathogen in an artificially infested field. The lowest disease incidence (DI) was observed in cultivars Eruption, Infantry, and Annapolis (median DI of 12.1-17.5%), while the highest DI was recorded for cultivars Reine des Glaces, Wayahead, and line FL. 43007 (median DI of 81.0-95.2%). Overall, significantly lower DI was observed in red and dark red accessions compared to those with a lower anthocyanin content. Genome-wide association mapping identified 19 QTLs for resistance to S. minor, 21 for the presence of red leaf color or its variations caused by the anthocyanin content, and one for the green color intensity. Eleven of the QTLs for disease resistance were located within 10 Mb of the loci associated with red color or anthocyanin content identified in this diversity panel. The frequent, non-random co-location of QTLs, together with the lower DI observed in red and dark red accessions suggests that lettuce interaction with S. minor may be partly influenced by anthocyanins. We have identified RLL2 and ANS, the genes of the anthocyanin biosynthesis pathway that co-locate with resistance QTLs, as candidates for functional studies to ascertain the involvement of anthocyanins in lettuce resistance against S. minor. Resistance QTLs closely linked with QTLs for anthocyanin content could be used to develop lettuce with a relatively high partial resistance and red color, while those not associated with anthocyanins could be used to develop partially resistant cultivars of green color.


Assuntos
Antocianinas , Lactuca , Lactuca/genética , Lactuca/microbiologia , Antocianinas/metabolismo , Estudo de Associação Genômica Ampla , Mapeamento Cromossômico
5.
Food Microbiol ; 113: 104260, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37098420

RESUMO

Lettuce is associated with seasonal outbreaks of Shiga toxin-producing Escherichia coli (STEC) infections. Little is known about how various biotic and abiotic factors affect the lettuce microbiome, which in turn impacts STEC colonization. We characterized the lettuce phyllosphere and surface soil bacterial, fungal, and oomycete communities at harvest in late-spring and -fall in California using metagenomics. Harvest season and field type, but not cultivar, significantly influenced the microbiome composition of leaves and surface soil near plants. Phyllosphere and soil microbiome compositions were correlated with specific weather factors. The relative abundance of Enterobacteriaceae, but not E. coli, was enriched on leaves (5.2%) compared to soil (0.4%) and correlated positively with minimum air temperature and wind speed. Co-occurrence networks revealed seasonal trends in fungi-bacteria interactions on leaves. These associations represented 39%-44% of the correlations between species. All significant E. coli co-occurrences with fungi were positive, while all negative associations were with bacteria. A large proportion of the leaf bacterial species was shared with those in soil, indicating microbiome transmission from the soil surface to the canopy. Our findings provide new insight into factors that shape lettuce microbial communities and the microbial context of foodborne pathogen immigration events in the lettuce phyllosphere.


Assuntos
Microbiota , Escherichia coli Shiga Toxigênica , Lactuca/microbiologia , Solo , Tempo (Meteorologia) , Bactérias/genética , Fungos/genética , Folhas de Planta/microbiologia
6.
Theor Appl Genet ; 135(6): 2009-2024, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35419653

RESUMO

KEY MESSAGE: GWAS identified 63 QTLs for resistance to downy mildew. Though QTLs were distributed across all chromosomes, the genomic regions frequently associated with resistance were located on chromosomes 4 and 5. Lettuce downy mildew is one of the most economically important diseases of cultivated lettuce worldwide. We have applied the genome-wide association mapping (GWAS) approach to detect QTLs for field resistance to downy mildew in the panel of 496 accessions tested in 21 field experiments. The analysis identified 131 significant marker-trait associations that could be grouped into 63 QTLs. At least 51 QTLs were novel, while remaining 12 QTLs overlapped with previously described QTLs for lettuce field resistance to downy mildew. Unlike race-specific, dominant Dm genes that mostly cluster on three out of nine lettuce chromosomes, QTLs (qDMR loci) for polygenic resistance are randomly distributed across all nine chromosomes. The genomic regions frequently associated with lettuce field resistance to downy mildew are located on chromosomes 4 and 5 and could be used for detailed study of the mechanism of polygenic resistance. The most resistant accessions identified in the current study (cvs. Auburn, Grand Rapids, Romabella, PI 226514, and PI 249536) are being incorporated into our breeding program. Markers closely linked to the resistance QTLs could be potentially used for marker-assisted selection, or in combination with other markers in the genome, for a combined genomic and marker-assisted selection. Up to date this is the most comprehensive study of QTLs for field resistance to downy mildew and the first study that uses GWAS for mapping disease resistance loci in lettuce.


Assuntos
Oomicetos , Peronospora , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Genômica , Lactuca/genética , Melhoramento Vegetal , Doenças das Plantas/genética
7.
BMC Biol ; 19(1): 131, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172070

RESUMO

BACKGROUND: Plant pathogens and their hosts undergo adaptive changes in managed agricultural ecosystems, by overcoming host resistance, but the underlying genetic adaptations are difficult to determine in natural settings. Verticillium dahliae is a fungal pathogen that causes Verticillium wilt on many economically important crops including lettuce. We assessed the dynamics of changes in the V. dahliae genome under selection in a long-term field experiment. RESULTS: In this study, a field was fumigated before the Verticillium dahliae race 1 strain (VdLs.16) was introduced. A derivative 145-strain population was collected over a 6-year period from this field in which a seggregating population of lettuce derived from Vr1/vr1 parents were evaluated. We de novo sequenced the parental genome of VdLs.16 strain and resequenced the derivative strains to analyze the genetic variations that accumulate over time in the field cropped with lettuce. Population genomics analyses identified 2769 single-nucleotide polymorphisms (SNPs) and 750 insertion/deletions (In-Dels) in the 145 isolates compared with the parental genome. Sequence divergence was identified in the coding sequence regions of 378 genes and in the putative promoter regions of 604 genes. Five-hundred and nine SNPs/In-Dels were identified as fixed. The SNPs and In-Dels were significantly enriched in the transposon-rich, gene-sparse regions, and in those genes with functional roles in signaling and transcriptional regulation. CONCLUSIONS: Under the managed ecosystem continuously cropped to lettuce, the local adaptation of V. dahliae evolves at a whole genome scale to accumulate SNPs/In-Dels nonrandomly in hypervariable regions that encode components of signal transduction and transcriptional regulation.


Assuntos
Ascomicetos , Ecossistema , Lactuca/genética , Doenças das Plantas/genética
8.
Plant Dis ; 106(10): 2583-2590, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35285269

RESUMO

Spring mix is a popular packaged salad that contains lettuce (Lactuca sativa L.) as one of its main ingredients. Plants for baby leaf lettuce (BLL) production are grown at very high densities, which enhances the occurrence of bacterial leaf spot (BLS) caused by Xanthomonas hortorum pv. vitians (Xhv), a disease that can make the crop unmarketable. The market demands disease-free, high-quality BLL all year round. Growing highly BLS-resistant cultivars will reduce loss of yield and quality, thus minimizing economic detriment to lettuce and spring mix growers. The research objectives were to identify lettuce accessions resistant to BLS and associated quantitative trait loci (QTL). A total of 495 lettuce accessions were screened with six isolates (BS0347, BS2861, BS3127, L7, L44, and Sc8B) of Xhv. Accessions showing overall high-level resistance to all tested Xhv isolates were 'Bunte Forellen', PI 226514, 'La Brillante', ARM09-161-10-1-4, 'Grenadier', 'Bella', PI 491210, 'Delight', and 'Romana Verde del Mercado'. Genome-wide association studies of BLS resistance by mixed linear model analyses identified significant QTLs on four lettuce chromosomes (2, 4, 6, and 8). The most significant QTL was on Chromosome 8 (P = 1.42 × 10-7), which explained 6.7% of total phenotypic variation for the disease severity. Accessions with a high level of resistance detected in this study are valuable resources for lettuce germplasm improvement. Molecular markers closely linked to QTLs can be considered for marker-assisted selection to develop new BLL lettuce cultivars with resistance to multiple races of Xhv.


Assuntos
Lactuca , Locos de Características Quantitativas , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Lactuca/genética , Lactuca/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Xanthomonas
9.
Theor Appl Genet ; 134(10): 3319-3337, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34196730

RESUMO

KEY MESSAGE: Photoperiod and temperature conditions elicit different genetic regulation over lettuce bolting and flowering. This study identifies environment-specific QTLs and putative genes and provides information for genetic marker assay. Bolting, defined as stem elongation, marks the plant life cycle transition from vegetative to reproductive stage. Lettuce is grown for its leaf rosettes, and premature bolting may reduce crop quality resulting in economic losses. The transition to reproductive stage is a complex process that involves many genetic and environmental factors. In this study, the effects of photoperiod and ambient temperature on bolting and flowering regulation were studied by utilizing a lettuce mapping population to identify quantitative trait loci (QTL) and by gene expression analyses of genotypes with contrasting phenotypes. A recombinant inbred line (RIL) population, derived from a cross between PI 251246 (early bolting) and cv. Salinas (late bolting), was grown in four combinations of short (8 h) and long (16 h) days and low (20 °C) and high (35 °C) temperature. QTL models revealed both genetic (G) and environmental (E) effects, and GxE interactions. A major QTL for bolting and flowering time was found on chromosome 7 (qFLT7.2), and two candidate genes were identified by fine mapping, homology, and gene expression studies. In short days and high temperature conditions, qFLT7.2 had no effect on plant development, while several small-effect loci on chromosomes 2, 3, 6, 8, and 9 were associated with bolting and flowering. Of these, the QTL on chromosome 2, qBFr2.1, co-located with the Flowering Locus T (LsFT) gene. Polymorphisms between parent genotypes in the promotor region may explain identified gene expression differences and were used to design a genetic marker which may be used to identify the late bolting trait.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Lactuca/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Flores/genética , Lactuca/genética , Fenótipo , Fotoperíodo , Proteínas de Plantas/genética
10.
Phytopathology ; 111(3): 541-547, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33141649

RESUMO

Lettuce downy mildew, caused by Bremia lactucae Regel, is the most economically important foliar disease of lettuce (Lactuca sativa L.). The deployment of resistant cultivars carrying dominant resistance genes (Dm genes) plays a crucial role in integrated downy mildew disease management; however, high variability in pathogen populations leads to the defeat of plant resistance conferred by Dm genes. Some lettuce cultivars exhibit field resistance that is only manifested in adult plants. Two populations of recombinant inbred lines (RILs), originating from crosses between the field resistant cultivars Grand Rapids and Iceberg and susceptible cultivars Salinas and PI491224, were evaluated for downy mildew resistance under field conditions. In all, 160 RILs from the Iceberg × PI491224 and 88 RILs from the Grand Rapids × Salinas populations were genotyped using genotyping by sequencing, which generated 906 and 746 high-quality markers, respectively, that were used for quantitative trait locus (QTL) analysis. We found a QTL in chromosome 4 that is present in both Grand Rapids × Salinas and Iceberg × PI491224 populations that has a major effect on field resistance. We also found two additional significant QTLs in chromosomes 2 and 5 in the Iceberg × PI491224 RIL population. Marker-assisted gene pyramiding of multiple Dm genes in combination with QTLs for field resistance provide the opportunity to develop cultivars with more durable resistance to B. lactucae.


Assuntos
Oomicetos , Locos de Características Quantitativas , Resistência à Doença/genética , Humanos , Lactuca/genética , Oomicetos/genética , Doenças das Plantas/genética , Locos de Características Quantitativas/genética
11.
Phytopathology ; 111(5): 842-849, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33141646

RESUMO

Lettuce (Lactuca sativa) is one of the most economically important vegetables in the United States, with approximately 50% of the domestic production concentrated in the Salinas Valley of California. Verticillium wilt, caused by races 1 and 2 of the fungal pathogen Verticillium dahliae, poses a major threat to lettuce production in this area. Although resistance governed by a single dominant gene against race 1 has previously been identified and is currently being incorporated into commercial cultivars, identification of resistance against race 2 has been challenging and no lines with complete resistance have been identified. In this study, we screened germplasm for resistance and investigated the genetics of partial resistance against race 2 using three mapping populations derived from crosses involving L. sativa × L. sativa and L. serriola × L. sativa. The inheritance of resistance in Lactuca species against race 2 is complex but a common quantitative trait locus (QTL) on linkage group 6, designated qVERT6.1 (quantitative Verticillium dahliae resistance on LG 6, first QTL), was detected in multiple populations. Additional race 2 resistance QTLs located in several linkage groups were detected in individual populations and environments. Because resistance in lettuce against race 2 is polygenic with a large genotype by environment interaction, breeding programs to incorporate these resistance genes should be aware of this complexity as they implement strategies to control race 2.


Assuntos
Verticillium , Ascomicetos , Lactuca/genética , Melhoramento Vegetal , Doenças das Plantas , Verticillium/genética
12.
Mol Plant Microbe Interact ; 33(11): 1265-1269, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32967552

RESUMO

Verticillium dahliae is a widespread fungal pathogen that causes Verticillium wilt on many economically important crops and ornamentals worldwide. Populations of V. dahliae have been divided into two distinct races based upon differential host responses in tomato and lettuce. Recently, the contemporary race 2 isolates were further divided into an additional race in tomato. Herein, we provide a high-quality reference genome for the race 1 strain VdLs.16 isolated from lettuce in California, U.S.A. This resource will contribute to ongoing research that aims to elucidate the genetic basis of V. dahliae pathogenicity and population genomic diversity.


Assuntos
Genoma Fúngico , Lactuca/microbiologia , Doenças das Plantas/microbiologia , Verticillium , Verticillium/genética , Virulência
13.
Theor Appl Genet ; 133(6): 1947-1966, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32123958

RESUMO

KEY MESSAGE: Two major QTL, one for shelf life that corresponds to qSL4 and one, qDEV7, for developmental rate, were identified. Associated markers will be useful in breeding for improved fresh-cut lettuce. Fresh-cut lettuce in packaged salad can have short shelf life, and visible deterioration may start within a week after processing. Yield and developmental rate are an important aspect of lettuce production. Genetic diversity and genome-wide association studies (GWAS) were performed on 493 accessions with the genotypic data of 4615 high-quality single nucleotide polymorphism markers. Population structure (Q), principal component (PC), and phylogenetic analyses displayed genetic relationships associated with lettuce types and geographic distribution. Data for shelf life, yield, developmental rate, and their stability indices were used for statistical analysis, and GWAS was performed by general and mixed linear models. The genetic relationship among the individuals was incorporated into the models using kinship matrix, PC, and Q. Broad-sense heritability (H2) across environments was 0.43 for shelf life, 0.36 for yield, and 0.60 for developmental rate. There was a negative correlation between yield and developmental rate. Significant marker-trait association (SMTA) was detected for shelf life on chromosome 4. The most significant quantitative trait locus (QTL,  qSL4, P = 2.23E-17) explained 24% of the total phenotypic variation (R2). The major QTL for developmental rate was detected on chromosome 7 (qDEV7, P = 2.43E-16, R2 = 17%), while additional QTLs with smaller effect were found in all chromosomes. No SMTA was detected for yield. The study identified lettuce accessions with extended and stable shelf life, stable yield, and desirable developmental rate. Molecular markers closely linked to traits can be applied for selection of preferable genotypes and for identification of genes associated with these traits.


Assuntos
Ligação Genética , Lactuca/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Mapeamento Cromossômico , Cruzamentos Genéticos , Armazenamento de Alimentos , Estudos de Associação Genética , Genótipo , Lactuca/fisiologia , Desequilíbrio de Ligação , Fenótipo , Filogenia , Análise de Componente Principal , Característica Quantitativa Herdável
14.
Sensors (Basel) ; 20(14)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679776

RESUMO

The color of plant leaves is moderated by the content of pigments, which can show considerable dorsiventral distribution. Two typical examples are leafy vegetables and ornamentals, wherein red and green color surfaces can be seen on the same leaf. The proof of concept is provided for predictive modeling of a leaf conceptual mid-point quasi-color (CMQ) from the content of pigments. The CMQ idea is based on the hypothesis that the content of pigments in leaves is associated with the combined color from both surfaces. The CMQ, which is calculated from CIELab color coordinates at adaxial and abaxial antipodes, is thus not an actual color, but a notion that can be used in modeling. The CMQ coordinates, predicted from the content of chlorophylls and anthocyanins by means of an artificial neural network (ANN), matched well with the CMQ coordinates empirically found on photosynthetically active leaves of lettuce (Lactuca sativa L.), but also with other plant species with comparable leaf attributes. Modeled values of lightness (qL*) decreased with the increasing content of both pigments, while the redness or greenness (qa*) and yellowness or blueness (qb*) of the CMQ were affected more by a relative content of chlorophylls and anthocyanins in leaves. The highest vividness of quasi-colors (qC*) was modeled for leaves with a high content of either pigment alone. The model predicted a substantially duller quasi-color for leaves with chlorophylls and anthocyanins present together, particularly when both pigments were present at very high levels.

15.
BMC Plant Biol ; 19(1): 305, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291883

RESUMO

BACKGROUND: Verticillium wilt caused by the fungus Verticillium dahliae race 1 is among the top disease concerns for lettuce in the Salinas and Pajaro Valleys of coastal central California. Resistance of lettuce against V. dahliae race 1 was previously mapped to the single dominant Verticillium resistance 1 (Vr1) locus. Lines of tomato resistant to race 1 are known to contain the closely linked Ve1 and Ve2 genes that encode receptor-like proteins with extracellular leucine-rich repeats; the Ve1 and Ve2 proteins act antagonistically to provide resistance against V. dahliae race 1. The Vr1 locus in lettuce contains a cluster of several genes with sequence similarity to the tomato Ve genes. We used genome sequencing and/or PCR screening along with pathogenicity assays of 152 accessions of lettuce to investigate allelic diversity and its relationship to race 1 resistance in lettuce. RESULTS: This approach identified a total of four Ve genes: LsVe1, LsVe2, LsVe3, and LsVe4. The majority of accessions, however, contained a combination of only three of these LsVe genes clustered on chromosomal linkage group 9 (within ~ 25 kb in the resistant cultivar La Brillante and within ~ 127 kb in the susceptible cultivar Salinas). CONCLUSIONS: A single allele, LsVe1L, was present in all resistant accessions and absent in all susceptible accessions. This allele can be used as a molecular marker for V. dahliae race 1 resistance in lettuce. A PCR assay for rapid detection of race 1 resistance in lettuce was designed based on nucleotide polymorphisms. Application of this assay allows identification of resistant genotypes in early stages of plant development or at seed-level without time- and labor-intensive testing in the field.


Assuntos
Resistência à Doença , Lactuca/genética , Doenças das Plantas/imunologia , Verticillium/fisiologia , Alelos , California , Mapeamento Cromossômico , Genótipo , Lactuca/imunologia , Doenças das Plantas/microbiologia
16.
BMC Plant Biol ; 19(1): 374, 2019 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451107

RESUMO

Following publication of the original article [1], the author reported a processing error in Figure 5. This has been corrected in the original article.

17.
Theor Appl Genet ; 132(8): 2439-2460, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31165222

RESUMO

KEY MESSAGE: Two QTLs for resistance to lettuce drop, qLDR1.1 and qLDR5.1, were identified. Associated SNPs will be useful in breeding for lettuce drop and provide the foundation for future molecular analysis. Lettuce drop, caused by Sclerotinia minor and S. sclerotiorum, is an economically important disease of lettuce. The association of resistance to lettuce drop with the commercially undesirable trait of fast bolting has hindered the integration of host resistance in control of this disease. Eruption is a slow-bolting cultivar that exhibits a high level of resistance to lettuce drop. Eruption also is completely resistant to Verticillium wilt caused by race 1 of Verticillium dahliae. A recombinant inbred line population from the cross Reine des Glaces × Eruption was genotyped by sequencing and evaluated for lettuce drop and bolting in separate fields infested with either S. minor or V. dahliae. Two quantitative trait loci (QTLs) for lettuce drop resistance were consistently detected in at least two experiments, and two other QTLs were identified in another experiment; the alleles for resistance at all four QTLs originated from Eruption. A QTL for lettuce drop resistance on linkage group (LG) 5, qLDR5.1, was consistently detected in all experiments and explained 11 to 25% of phenotypic variation. On LG1, qLDR1.1 was detected in two experiments explaining 9 to 12% of the phenotypic variation. Three out of four resistance QTLs are distinct from QTLs for bolting; qLDR5.1 is pleiotropic or closely linked with a QTL for early bolting; however, the rate of bolting shows only a small effect on the variance in resistance observed at this locus. The SNP markers linked with these QTLs will be useful in breeding for resistance through marker-assisted selection.


Assuntos
Cruzamentos Genéticos , Resistência à Doença/genética , Endogamia , Lactuca/genética , Lactuca/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Recombinação Genética/genética , Alelos , Antocianinas/metabolismo , Ascomicetos/fisiologia , Ligação Genética , Loci Gênicos , Lactuca/imunologia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Verticillium/fisiologia
18.
Sensors (Basel) ; 19(21)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694293

RESUMO

Salinity is a rising concern in many lettuce-growing regions. Lettuce (Lactuca sativa L.) is sensitive to salinity, which reduces plant biomass, and causes leaf burn and early senescence. We sought to identify physiological traits important in salt tolerance that allows lettuce adaptation to high salinity while maintaining its productivity. Based on previous salinity tolerance studies, one sensitive and one tolerant genotype each was selected from crisphead, butterhead, and romaine, as well as leaf types of cultivated lettuce and its wild relative, L. serriola L. Physiological parameters were measured four weeks after transplanting two-day old seedlings into 350 mL volume pots filled with sand, hydrated with Hoagland nutrient solution and grown in a growth chamber. Salinity treatment consisted of gradually increasing concentrations of NaCl and CaCl2 from 0 mM/0 mM at the time of transplanting, to 30 mM/15 mM at the beginning of week three, and maintaining it until harvest. Across the 10 genotypes, leaf area and fresh weight decreased 0-64% and 16-67%, respectively, under salinity compared to the control. Salinity stress increased the chlorophyll index by 4-26% in the cultivated genotypes, while decreasing it by 5-14% in the two wild accessions. Tolerant lines less affected by elevated salinity were characterized by high values of the chlorophyll fluorescence parameters Fv/Fm and instantaneous photosystem II quantum yield (QY), and lower leaf transpiration.


Assuntos
Lactuca/fisiologia , Fenômica , Salinidade , Adaptação Fisiológica , Biomassa , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Fluorescência , Lactuca/anatomia & histologia , Fotossíntese , Folhas de Planta/fisiologia , Análise de Componente Principal , Temperatura , Pressão de Vapor
19.
Plant Dis ; 102(2): 341-348, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30673527

RESUMO

Lettuce (Lactuca sativa L.) production in coastal California, one of the major lettuce-producing areas of the United States, is regularly affected by outbreaks of Impatiens necrotic spot virus (INSV), a member of the genus Orthotospovirus. Transmission of INSV among lettuce crops in this growing region has been attributed predominantly to the western flower thrips (Frankliniella occidentalis). INSV is acquired by first- or second-instar thrips nymphs feeding on infected host plants (not necessarily lettuce). The virus replicates within the insect vector, and is transmitted to new plants by adult thrips as they feed on epidermal and mesophyll cells of susceptible host plants. All currently grown cultivars of lettuce are susceptible to the disease. Screening lettuce for resistance to INSV under field conditions is problematic because natural infections appear sporadically and the virus is not evenly distributed across infected fields. We have developed a greenhouse-based assay that uses viruliferous thrips in combination with mechanical inoculation that allows dependable, year-round screening for resistance. In all, 89 cultivars, breeding lines, and plant introductions of cultivated lettuce, together with 53 accessions from 11 other Lactuca spp., 4 accessions from two dandelion (Taraxacum) species, and 4 tomato (Solanum lycopersicum L.) lines were evaluated for resistance to INSV. All tested material was susceptible to INSV to varying degrees, with the exception of two tomato lines that carry the Sw-5 gene that confers resistance to Tomato spotted wilt virus, a virus closely related to INSV. In cultivated lettuce, a partial resistance to INSV was observed in cultivars Amazona, Ancora, Antigua, Commodore, Eruption, Iceberg, La Brillante, Merlot, Telluride, and Tinto. Limited comparison of the greenhouse-based screening results with the data from opportunistic evaluations of resistance on 775 lettuce accessions from six field trials indicates consistency of results from both greenhouse and field environments. The most resistant lettuce accessions are being incorporated into our breeding program for introgression of resistance into lettuce breeding lines.


Assuntos
Produção Agrícola/métodos , Resistência à Doença , Lactuca/virologia , Doenças das Plantas/virologia , Tospovirus/fisiologia , Melhoramento Vegetal , Especificidade da Espécie
20.
Phytopathology ; 107(1): 6-17, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27618193

RESUMO

Plant phenomics approaches aim to measure traits such as growth, performance, and composition of plants using a suite of noninvasive technologies. The goal is to link phenotypic traits to the genetic information for particular genotypes, thus creating the bridge between the phenome and genome. Application of sensing technologies for detecting specific phenotypic reactions occurring during plant-pathogen interaction offers new opportunities for elucidating the physiological mechanisms that link pathogen infection and disease symptoms in the host, and also provides a faster approach in the selection of genetic material that is resistant to specific pathogens or strains. Appropriate phenomics methods and tools may also allow presymptomatic detection of disease-related changes in plants or to identify changes that are not visually apparent. This review focuses on the use of sensor-based phenomics tools in plant pathology such as those related to digital imaging, chlorophyll fluorescence imaging, spectral imaging, and thermal imaging. A brief introduction is provided for less used approaches like magnetic resonance, soft x-ray imaging, ultrasound, and detection of volatile compounds. We hope that this concise review will stimulate further development and use of tools for automatic, nondestructive, and high-throughput phenotyping of plant-pathogen interaction.


Assuntos
Genômica , Interações Hospedeiro-Patógeno , Processamento de Imagem Assistida por Computador/métodos , Fenótipo , Doenças das Plantas/genética , Plantas/genética , Genótipo , Imageamento por Ressonância Magnética , Imagem Óptica , Doenças das Plantas/microbiologia , Patologia Vegetal , Fenômenos Fisiológicos Vegetais , Plantas/anatomia & histologia , Plantas/microbiologia , Termografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA