Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2400666121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38976738

RESUMO

Urinary tract infection (UTI) commonly afflicts people with diabetes. This augmented infection risk is partly due to deregulated insulin receptor (IR) signaling in the kidney collecting duct. The collecting duct is composed of intercalated cells (ICs) and principal cells (PCs). Evidence suggests that ICs contribute to UTI defenses. Here, we interrogate how IR deletion in ICs impacts antibacterial defenses against uropathogenic Escherichia coli. We also explore how IR deletion affects immune responses in neighboring PCs with intact IR expression. To accomplish this objective, we profile the transcriptomes of IC and PC populations enriched from kidneys of wild-type and IC-specific IR knock-out mice that have increased UTI susceptibility. Transcriptomic analysis demonstrates that IR deletion suppresses IC-integrated stress responses and innate immune defenses. To define how IR shapes these immune defenses, we employ murine and human kidney cultures. When challenged with bacteria, murine ICs and human kidney cells with deregulated IR signaling cannot engage central components of the integrated stress response-including activating transcriptional factor 4 (ATF4). Silencing ATF4 impairs NFkB activation and promotes infection. In turn, NFkB silencing augments infection and suppresses antimicrobial peptide expression. In diabetic mice and people with diabetes, collecting duct cells show reduced IR expression, impaired integrated stress response engagement, and compromised immunity. Collectively, these translational data illustrate how IR orchestrates collecting duct antibacterial responses and the communication between ICs and PCs.


Assuntos
Camundongos Knockout , Receptor de Insulina , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Camundongos , Infecções Urinárias/microbiologia , Infecções Urinárias/metabolismo , Infecções Urinárias/imunologia , Humanos , Receptor de Insulina/metabolismo , Escherichia coli Uropatogênica/imunologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Rim/metabolismo , Transdução de Sinais , Túbulos Renais Coletores/metabolismo , Imunidade Inata , Camundongos Endogâmicos C57BL
2.
Proc Natl Acad Sci U S A ; 120(4): e2213363120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36652479

RESUMO

With the emergence of antibiotic-resistant bacteria, innovative approaches are needed for the treatment of urinary tract infections. Boosting antimicrobial peptide expression may provide an alternative to antibiotics. Here, we developed reporter cell lines and performed a high-throughput screen of clinically used drugs to identify compounds that boost ribonuclease 4 and 7 expression (RNase 4 and 7), peptides that have antimicrobial activity against antibiotic-resistant uropathogens. This screen identified histone deacetylase (HDAC) inhibitors as effective RNase 4 and RNase 7 inducers. Validation studies in primary human kidney and bladder cells confirmed pan-HDAC inhibitors as well as the HDAC class I inhibitor, MS-275, induce RNase 4 and RNase 7 to protect human kidney and bladder cells from uropathogenic Escherichia coli. When we administered MS-275 to mice, RNase 4 and 7 expression increased and mice were protected from acute transurethral E. coli challenge. In support of this mechanism, MS-275 treatment increased acetylated histone H3 binding to the RNASE4 and RNASE7 promoters. Overexpression and knockdown of HDAC class I proteins identified HDAC3 as a primary regulator of RNase 4 and 7. These results demonstrate the protective effects of enhancing RNase 4 and RNase 7, opening the door to repurposing medications as antibiotic conserving therapeutics for urinary tract infection.


Assuntos
Inibidores de Histona Desacetilases , Infecções Urinárias , Humanos , Camundongos , Animais , Inibidores de Histona Desacetilases/farmacologia , Escherichia coli/metabolismo , Reposicionamento de Medicamentos , Ribonucleases/metabolismo , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Antibacterianos
3.
Nat Rev Urol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714857

RESUMO

Rising rates of antibiotic resistance in uropathogenic bacteria compromise patient outcomes and prolong hospital stays. Consequently, new strategies are needed to prevent and control the spread of antibiotic resistance in uropathogenic bacteria. Over the past two decades, sizeable clinical efforts and research advances have changed urinary tract infection (UTI) treatment and prevention strategies to conserve antibiotic use. The emergence of antimicrobial stewardship, policies from national societies, and the development of new antimicrobials have shaped modern UTI practices. Future UTI management practices could be driven by the evolution of antimicrobial stewardship, improved and readily available diagnostics, and an improved understanding of how the microbiome affects UTI. Forthcoming UTI treatment and prevention strategies could employ novel bactericidal compounds, combinations of new and classic antimicrobials that enhance bacterial killing, medications that prevent bacterial attachment to uroepithelial cells, repurposing drugs, and vaccines to curtail the rising rates of antibiotic resistance in uropathogenic bacteria and improve outcomes in people with UTI.

4.
Cell Rep ; 43(4): 114007, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38517889

RESUMO

Urinary tract infections (UTIs) commonly afflict people with diabetes. To better understand the mechanisms that predispose diabetics to UTIs, we employ diabetic mouse models and altered insulin signaling to show that insulin receptor (IR) shapes UTI defenses. Our findings are validated in human biosamples. We report that diabetic mice have suppressed IR expression and are more susceptible to UTIs caused by uropathogenic Escherichia coli (UPEC). Systemic IR inhibition increases UPEC susceptibility, while IR activation reduces UTIs. Localized IR deletion in bladder urothelium promotes UTI by increasing barrier permeability and suppressing antimicrobial peptides. Mechanistically, IR deletion reduces nuclear factor κB (NF-κB)-dependent programming that co-regulates urothelial tight junction integrity and antimicrobial peptides. Exfoliated urothelial cells or urine samples from diabetic youths show suppressed expression of IR, barrier genes, and antimicrobial peptides. These observations demonstrate that urothelial insulin signaling has a role in UTI prevention and link IR to urothelial barrier maintenance and antimicrobial peptide expression.


Assuntos
Receptor de Insulina , Transdução de Sinais , Bexiga Urinária , Infecções Urinárias , Urotélio , Receptor de Insulina/metabolismo , Infecções Urinárias/microbiologia , Infecções Urinárias/metabolismo , Infecções Urinárias/patologia , Animais , Urotélio/metabolismo , Urotélio/patologia , Urotélio/microbiologia , Humanos , Bexiga Urinária/microbiologia , Bexiga Urinária/patologia , Bexiga Urinária/metabolismo , Camundongos , Escherichia coli Uropatogênica/patogenicidade , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Feminino , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Insulina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Masculino
5.
Mol Metab ; 79: 101849, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056691

RESUMO

OBJECTIVE: Energy-intensive kidney reabsorption processes essential for normal whole-body function are maintained by tubular epithelial cell metabolism. Although tubular metabolism changes markedly following acute kidney injury (AKI), it remains unclear which metabolic alterations are beneficial or detrimental. By analyzing large-scale, publicly available datasets, we observed that AKI consistently leads to downregulation of the mitochondrial pyruvate carrier (MPC). This investigation aimed to understand the contribution of the tubular MPC to kidney function, metabolism, and acute injury severity. METHODS: We generated tubular epithelial cell-specific Mpc1 knockout (MPC TubKO) mice and employed renal function tests, in vivo renal 13C-glucose tracing, mechanistic enzyme activity assays, and tests of injury and survival in an established rhabdomyolysis model of AKI. RESULTS: MPC TubKO mice retained normal kidney function, displayed unchanged markers of kidney injury, but exhibited coordinately increased enzyme activities of the pentose phosphate pathway and the glutathione and thioredoxin oxidant defense systems. Following rhabdomyolysis-induced AKI, compared to WT control mice, MPC TubKO mice showed increased glycolysis, decreased kidney injury and oxidative stress markers, and strikingly increased survival. CONCLUSIONS: Our findings suggest that decreased renal tubular mitochondrial pyruvate uptake hormetically upregulates oxidant defense systems before AKI and is a beneficial adaptive response after rhabdomyolysis-induced AKI. This raises the possibility of therapeutically modulating the MPC to attenuate AKI severity.


Assuntos
Injúria Renal Aguda , Rabdomiólise , Camundongos , Animais , Transportadores de Ácidos Monocarboxílicos/metabolismo , Injúria Renal Aguda/metabolismo , Oxirredução , Rabdomiólise/induzido quimicamente , Rabdomiólise/metabolismo , Oxidantes/efeitos adversos
6.
bioRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778297

RESUMO

Energy-intensive kidney reabsorption processes essential for normal whole-body function are maintained by tubular epithelial cell metabolism. Tubular metabolism changes markedly following acute kidney injury (AKI), but which changes are adaptive versus maladaptive remain poorly understood. In publicly available data sets, we noticed a consistent downregulation of the mitochondrial pyruvate carrier (MPC) after AKI, which we experimentally confirmed. To test the functional consequences of MPC downregulation, we generated novel tubular epithelial cell-specific Mpc1 knockout (MPC TubKO) mice. 13C-glucose tracing, steady-state metabolomic profiling, and enzymatic activity assays revealed that MPC TubKO coordinately increased activities of the pentose phosphate pathway and the glutathione and thioredoxin oxidant defense systems. Following rhabdomyolysis-induced AKI, MPC TubKO decreased markers of kidney injury and oxidative damage and strikingly increased survival. Our findings suggest that decreased mitochondrial pyruvate uptake is a central adaptive response following AKI and raise the possibility of therapeutically modulating the MPC to attenuate AKI severity.

7.
J Clin Invest ; 131(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779412

RESUMO

Ribonuclease 7 (RNase 7) is an antimicrobial peptide that prevents urinary tract infections (UTI); however, it is yet unknown how RNASE7 genetic variations affect its antimicrobial activity and its mitigation of UTI risk. This study determined whether the RNASE7 SNP rs1263872 is more prevalent in children with UTI and defined how rs1263872 affects RNase 7's antimicrobial activity against uropathogenic E. coli (UPEC). We performed genotyping for rs1263872 in 2 national UTI cohorts, including children enrolled in the Randomized Intervention for Children with Vesicoureteral Reflux trial or the Careful Urinary Tract Infection Evaluation study. Genotypes from these cohorts were compared with those of female controls with no UTI. To assess whether rs1263872 affects RNase 7's antimicrobial activity, we generated RNase 7 peptides and genetically modified urothelial cultures encoding wild-type RNase 7 and its variant. Compared with controls, girls in both UTI cohorts had an increased prevalence of the RNASE7 variant. Compared with the missense variant, wild-type RNase 7 peptide showed greater bactericidal activity against UPEC. Wild-type RNase 7 overexpression in human urothelial cultures reduced UPEC invasive infection compared with mutant overexpression. These results show that children with UTI have an increased prevalence of RNASE7 rs1263872, which may increase UTI susceptibility by suppressing RNase 7's antibacterial activity.


Assuntos
Peptídeos Antimicrobianos/genética , Polimorfismo de Nucleotídeo Único , Ribonucleases/genética , Infecções Urinárias/etiologia , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Lactente , Ribonucleases/fisiologia , Infecções Urinárias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA