Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Transgenic Res ; 32(5): 399-409, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37326744

RESUMO

The presence and levels of transgenic maize in Mexico and the effect this could have on local landraces or closely related species such as teosinte has been the subject of several previous reports, some showing contrasting results. Cultural, social and political factors all affect maize cultivation in Mexico and although since 1998 there has been a moratorium on the commercial cultivation of transgenic maize, Mexico imports maize, mainly from the USA where transgenic cultivars are widely grown. Additionally extensive migration between rural areas in Mexico and the USA and customs of seed exchange between farmers may also play an unintentional role in the establishment of transgenic seed. A comprehensive study of all Mexican maize landraces throughout the country is not feasible, however this report presents data based on analysis of 3204 maize accessions obtained from the central region of Mexico (where permits have never been authorized for cultivation of transgenic maize) and the northern region (where for a short period authorization for experimental plots was granted). The results of the study confirm that transgenes are present in all the geographical areas sampled and were more common in germplasm obtained in the northern region. However, there was no evidence that regions where field trials had been authorized showed higher levels of transgene presence or that the morphology of seed lots harboring transgenic material was significantly modified in favor of expected transgenic phenotypes.


Assuntos
Zea mays , Animais , Plantas Geneticamente Modificadas/genética , Zea mays/genética , México , Transgenes , Animais Geneticamente Modificados
2.
J Exp Bot ; 73(12): 3898-3912, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35312760

RESUMO

While most plants die below a threshold of water content, desiccation-tolerant species display specific responses that allow them to survive extreme dehydration. Some of these responses are activated at critical stages during water loss and could represent the difference between desiccation tolerance (DT) and death. Here, we report the development of a simple and reproducible system to determine DT in Selaginella species. The system is based on exposure of excised tissue to a dehydration agent inside small containers, and subsequent evaluation for tissue viability. We evaluated several methodologies to determine viability upon desiccation including: triphenyltetrazolium chloride (TTC) staining, the quantum efficiency of PSII, antioxidant potential, and relative electrolyte leakage. Our results show that the TTC test is a simple and accurate assay to identify novel desiccation-tolerant Selaginella species, and can also indicate viability in other desiccation-tolerant models (i.e. ferns and mosses). The system we developed is particularly useful to identify critical points during the dehydration process. We found that a desiccation-sensitive Selaginella species shows a change in viability when dehydrated to 40% relative water content, indicating the onset of a critical condition at this water content. Comparative studies at critical stages could provide a better understanding of DT mechanisms and unravel insights into the key responses to survive desiccation.


Assuntos
Gleiquênias , Selaginellaceae , Biomarcadores , Desidratação , Dessecação , Água/fisiologia
3.
BMC Plant Biol ; 20(1): 468, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046015

RESUMO

BACKGROUND: Desiccation tolerant Selaginella species evolved to survive extreme environmental conditions. Studies to determine the mechanisms involved in the acquisition of desiccation tolerance (DT) have focused on only a few Selaginella species. Due to the large diversity in morphology and the wide range of responses to desiccation within the genus, the understanding of the molecular basis of DT in Selaginella species is still limited. RESULTS: Here we present a reference transcriptome for the desiccation tolerant species S. sellowii and the desiccation sensitive species S. denticulata. The analysis also included transcriptome data for the well-studied S. lepidophylla (desiccation tolerant), in order to identify DT mechanisms that are independent of morphological adaptations. We used a comparative approach to discriminate between DT responses and the common water loss response in Selaginella species. Predicted proteomes show strong homology, but most of the desiccation responsive genes differ between species. Despite such differences, functional analysis revealed that tolerant species with different morphologies employ similar mechanisms to survive desiccation. Significant functions involved in DT and shared by both tolerant species included induction of antioxidant systems, amino acid and secondary metabolism, whereas species-specific responses included cell wall modification and carbohydrate metabolism. CONCLUSIONS: Reference transcriptomes generated in this work represent a valuable resource to study Selaginella biology and plant evolution in relation to DT. Our results provide evidence of convergent evolution of S. sellowii and S. lepidophylla due to the different gene sets that underwent selection to acquire DT.


Assuntos
Adaptação Fisiológica/genética , Desidratação/genética , Desidratação/fisiopatologia , Selaginellaceae/genética , Selaginellaceae/fisiologia , Especificidade da Espécie , Estresse Fisiológico/genética , Evolução Biológica , Perfilação da Expressão Gênica , Variação Genética
4.
BMC Genomics ; 20(1): 473, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182030

RESUMO

BACKGROUND: Reliable indicators for the onset of flowering are not available for most perennial monocarpic species, representing a drawback for crops such as bamboo, agave and banana. The ability to predict and control the transition to the reproductive stage in A. tequilana would represent an advantage for field management of agaves for tequila production and for the development of a laboratory model for agave species. RESULTS: Consistent morphological features could not be determined for the vegetative to reproductive transition in A. tequilana. However, changes in carbohydrate metabolism where sucrose decreased and fructans of higher degree of polymerization increased in leaves before and after the vegetative to reproductive transition were observed. At the molecular level, transcriptome analysis from leaf and shoot apical meristem tissue of A. tequilana plants from different developmental stages identified OASES as the most effective assembly program and revealed evidence for incomplete transcript processing in the highly redundant assembly obtained. Gene ontology analysis uncovered enrichment for terms associated with carbohydrate and hormone metabolism and detailed analysis of expression patterns for individual genes revealed roles for specific Flowering locus T (florigen), MADS box proteins, gibberellins and fructans in the transition to flowering. CONCLUSIONS: Based on the data obtained, a preliminary model was developed to describe the regulatory mechanisms underlying the initiation of flowering in A. tequilana. Identification of specific promoter and repressor Flowering Locus T and MADS box genes facilitates functional analysis and the development of strategies to modulate the vegetative to reproductive transition in A. tequilana.


Assuntos
Agave/crescimento & desenvolvimento , Agave/genética , Agave/anatomia & histologia , Agave/metabolismo , Florígeno/metabolismo , Flores/crescimento & desenvolvimento , Frutanos/metabolismo , Giberelinas/metabolismo , Proteínas de Domínio MADS/genética , Família Multigênica , Folhas de Planta/química , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA-Seq , Açúcares/análise , Transcriptoma
5.
J Exp Bot ; 70(22): 6521-6537, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31087091

RESUMO

The potential for crassulacean acid metabolism (CAM) to support resilient crops that meet demands for food, fiber, fuel, and pharmaceutical products far exceeds current production levels. This review provides background on five families of plants that express CAM, including examples of many species within these families that have potential agricultural uses. We summarize traditional uses, current developments, management practices, environmental tolerance ranges, and economic values of CAM species with potential commercial applications. The primary benefit of CAM in agriculture is high water use efficiency that allows for reliable crop yields even in drought conditions. Agave species, for example, grow in arid conditions and have been exploited for agricultural products in North and South America for centuries. Yet, there has been very little investment in agricultural improvement for most useful Agave varieties. Other CAM species that are already traded globally include Ananas comosus (pineapple), Aloe spp., Vanilla spp., and Opuntia spp., but there are far more with agronomic uses that are less well known and not yet developed commercially. Recent advances in technology and genomic resources provide tools to understand and realize the tremendous potential for using CAM crops to produce climate-resilient agricultural commodities in the future.


Assuntos
Agricultura/métodos , Ácidos Carboxílicos/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Genômica
6.
Nature ; 498(7452): 94-8, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23665961

RESUMO

It has been argued that the evolution of plant genome size is principally unidirectional and increasing owing to the varied action of whole-genome duplications (WGDs) and mobile element proliferation. However, extreme genome size reductions have been reported in the angiosperm family tree. Here we report the sequence of the 82-megabase genome of the carnivorous bladderwort plant Utricularia gibba. Despite its tiny size, the U. gibba genome accommodates a typical number of genes for a plant, with the main difference from other plant genomes arising from a drastic reduction in non-genic DNA. Unexpectedly, we identified at least three rounds of WGD in U. gibba since common ancestry with tomato (Solanum) and grape (Vitis). The compressed architecture of the U. gibba genome indicates that a small fraction of intergenic DNA, with few or no active retrotransposons, is sufficient to regulate and integrate all the processes required for the development and reproduction of a complex organism.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Magnoliopsida/genética , DNA Intergênico/genética , Duplicação Gênica/genética , Genes de Plantas/genética , Modelos Genéticos , Solanum/genética , Sintenia/genética , Vitis/genética
7.
Plant Mol Biol ; 91(1-2): 37-51, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26826012

RESUMO

Observation of a differential expression pattern, including strong expression in meristematic tissue of an Agave tequilana GlsA/ZRF ortholog suggested an important role for this gene during bulbil formation and developmental changes in this species. In order to better understand this role, the two GlsA/ZFR orthologs present in the genome of Arabidopsis thaliana were functionally characterized by analyzing expression patterns, double mutant phenotypes, promoter-GUS fusions and expression of hormone related or meristem marker genes. Patterns of expression for A. thaliana show that GlsA/ZFR genes are strongly expressed in SAMs and RAMs in mature plants and developing embryos and double mutants showed multiple changes in morphology related to both SAM and RAM tissues. Typical double mutants showed stunted growth of aerial and root tissue, formation of multiple ectopic meristems and effects on cotyledons, leaves and flowers. The KNOX genes STM and BP were overexpressed in double mutants whereas CLV3, WUSCHEL and AS1 were repressed and lack of AtGlsA expression was also associated with changes in localization of auxin and cytokinin. These results suggest that GlsA/ZFR is an essential component of the machinery that maintains the integrity of SAM and RAM tissue and underline the potential to identify new genes or gene functions based on observations in non-model plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Meristema/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Genoma de Planta , Mutagênese Insercional , Plantas Geneticamente Modificadas
8.
J Exp Bot ; 66(13): 3893-905, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25911746

RESUMO

In Agave tequilana, reproductive failure or inadequate flower development stimulates the formation of vegetative bulbils at the bracteoles, ensuring survival in a hostile environment. Little is known about the signals that trigger this probably unique phenomenon in agave species. Here we report that auxin plays a central role in bulbil development and show that the localization of PIN1-related proteins is consistent with altered auxin transport during this process. Analysis of agave transcriptome data led to the identification of the A. tequilana orthologue of PIN1 (denoted AtqPIN1) and a second closely related gene from a distinct clade reported as 'Sister of PIN1' (denoted AtqSoPIN1). Quantitative real-time reverse transcription-PCR (RT-qPCR) analysis showed different patterns of expression for each gene during bulbil formation, and heterologous expression of the A. tequilana PIN1 and SoPIN1 genes in Arabidopsis thaliana confirmed functional differences between these genes. Although no free auxin was detected in induced pedicel samples, changes in the levels of auxin precursors were observed. Taken as a whole, the data support the model that AtqPIN1 and AtqSoPIN1 have co-ordinated but distinct functions in relation to auxin transport during the initial stages of bulbil formation.


Assuntos
Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Agave/anatomia & histologia , Agave/efeitos dos fármacos , Agave/genética , Agave/metabolismo , Arabidopsis/genética , Transporte Biológico/efeitos dos fármacos , DNA Complementar/genética , Flores/efeitos dos fármacos , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Ácidos Indolacéticos/farmacologia , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real
9.
J Fungi (Basel) ; 10(9)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39330411

RESUMO

Colletotrichum lindemuthianum is the most frequent pathogenic fungus of the common bean Phaseolus vulgaris. This filamentous fungus employs a hemibiotrophic nutrition/infection strategy, which is characteristic of many Colletotrichum species. Due to host-pathogen coevolution, C. lindemuthianum includes pathotypes with a diversity of virulence against differential common bean varieties. In this study, we performed comparative genomic analyses on three pathotypes with different virulence levels and a non-pathogenic pathotype, isolated from different geographical areas in Mexico. Our results revealed large genomes with high transposable element contents that have undergone expansions, generating intraspecific diversity. All the pathotypes exhibited a similar number of clusters of orthologous genes (COGs) and Gene Ontology (GO) terms. TFomes contain families that are typical in fungal genomes; however, they show different contents between pathotypes, mainly in transcription factors with the fungal-specific TF and Zn2Cys6 domains. Peptidase families mainly contain abundant serine peptidases, metallopeptidases, and cysteine peptidases. In the secretomes, the number of genes differed between the pathotypes, with a high percentage of candidate effectors. Both the virulence gene and CAZyme gene content for each pathotype was abundant and diverse, and the latter was enriched in hemicellulolytic enzymes. We provide new insights into the nature of intraspecific diversity among C. lindemuthianum pathotypes and the origin of their ability to rapidly adapt to genetic changes in its host and environmental conditions.

10.
Curr Protoc ; 4(5): e1054, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38808970

RESUMO

RNA sequencing (RNA-seq) has emerged as a powerful tool for assessing genome-wide gene expression, revolutionizing various fields of biology. However, analyzing large RNA-seq datasets can be challenging, especially for students or researchers lacking bioinformatics experience. To address these challenges, we present a comprehensive guide to provide step-by-step workflows for analyzing RNA-seq data, from raw reads to functional enrichment analysis, starting with considerations for experimental design. This is designed to aid students and researchers working with any organism, irrespective of whether an assembled genome is available. Within this guide, we employ various recognized bioinformatics tools to navigate the landscape of RNA-seq analysis and discuss the advantages and disadvantages of different tools for the same task. Our protocol focuses on clarity, reproducibility, and practicality to enable users to navigate the complexities of RNA-seq data analysis easily and gain valuable biological insights from the datasets. Additionally, all scripts and a sample dataset are available in a GitHub repository to facilitate the implementation of the analysis pipeline. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Analysis of data from a model plant with an available reference genome Basic Protocol 2: Gene ontology enrichment analysis Basic Protocol 3: De novo assembly of data from non-model plants.


Assuntos
RNA-Seq , RNA-Seq/métodos , Biologia Computacional/métodos , Análise de Sequência de RNA/métodos , Software
11.
J Fungi (Basel) ; 10(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38921392

RESUMO

Colletotrichum lindemuthianum is a phytopathogenic fungus that causes anthracnose in common beans (Phaseolus vulgaris) and presents a great diversity of pathotypes with different levels of virulence against bean varieties worldwide. The purpose of this study was to establish whether pathotypic diversity is associated with differences in the mycelial growth and secretion of plant-cell-wall-degrading enzymes (PCWDEs). We evaluated growth, hemicellulase and cellulase activity, and PCWDE secretion in four pathotypes of C. lindemuthianum in cultures with glucose, bean hypocotyls and green beans of P. vulgaris, and water hyacinth (Eichhornia crassipes). The results showed differences in the mycelial growth, hemicellulolytic activity, and PCWDE secretion among the pathotypes. Glucose was not the preferred carbon source for the best mycelial growth in all pathotypes, each of which showed a unique PCWDE secretion profile, indicating different levels of carbon catabolite regulation (CCR). The pathotypes showed a high differential hemicellulolytic capacity to degrade host and water hyacinth tissues, suggesting CCR by pentoses and that there are differences in the absorption and metabolism of different monosaccharides and/or disaccharides. We propose that different levels of CCR could optimize growth in different host tissues and could allow for consortium behavior in interactions with bean crops.

12.
BMC Genomics ; 14: 563, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23957668

RESUMO

BACKGROUND: Agaves are succulent monocotyledonous plants native to xeric environments of North America. Because of their adaptations to their environment, including crassulacean acid metabolism (CAM, a water-efficient form of photosynthesis), and existing technologies for ethanol production, agaves have gained attention both as potential lignocellulosic bioenergy feedstocks and models for exploring plant responses to abiotic stress. However, the lack of comprehensive Agave sequence datasets limits the scope of investigations into the molecular-genetic basis of Agave traits. RESULTS: Here, we present comprehensive, high quality de novo transcriptome assemblies of two Agave species, A. tequilana and A. deserti, built from short-read RNA-seq data. Our analyses support completeness and accuracy of the de novo transcriptome assemblies, with each species having a minimum of approximately 35,000 protein-coding genes. Comparison of agave proteomes to those of additional plant species identifies biological functions of gene families displaying sequence divergence in agave species. Additionally, a focus on the transcriptomics of the A. deserti juvenile leaf confirms evolutionary conservation of monocotyledonous leaf physiology and development along the proximal-distal axis. CONCLUSIONS: Our work presents a comprehensive transcriptome resource for two Agave species and provides insight into their biology and physiology. These resources are a foundation for further investigation of agave biology and their improvement for bioenergy development.


Assuntos
Adaptação Biológica/genética , Agave/genética , Secas , Transcriptoma , Agave/metabolismo , Análise por Conglomerados , Biologia Computacional , Elementos de DNA Transponíveis , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Fotossíntese/genética , Folhas de Planta/genética , Polimorfismo Genético , Proteoma , Estresse Fisiológico/genética , Ativação Transcricional
13.
Plant Reprod ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38082036

RESUMO

KEY MESSAGE: Antagonistic expression of Flowering locus T proteins and the ageing pathway via miRNAs and sugar metabolism regulate the initiation of flowering in A. tequilana. Flowering in commercial plantations of Agave tequilana signals that plants are ready to harvest for tequila production. However, time of flowering is often unpredictable and a detailed understanding of the process would be beneficial in the field, for breeding and for the development of future research. This report describes the functional analysis of A. tequilana FLOWERING LOCUS T (FT) genes by heterologous expression in A. thaliana and in situ hybridization in agave plants. The gene structures of the Agave tequilana FT family are also described and putative regulatory promoter elements were identified. Most Agave species have monocarpic, perennial life cycles that can last over 25 years during which plants do not respond to the normal environmental signals which induce flowering, suggesting that the ageing pathway as described in Arabidopsis may play an important role in determining flowering time in these species. Elements of this pathway were analyzed and in silico data is presented that supports the regulation of SQUAMOSA PROMOTER BINDING LIKE proteins (SPL), APETALA2 (AP2) proteins and members of Plant Glycoside Hydrolase Family 32 (PGHF32) by interactions with miRNAs 156, 172 and 164 during the initiation of flowering in A. tequilana.

14.
Sex Plant Reprod ; 25(1): 11-26, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22012076

RESUMO

Agave tequilana is a monocarpic perennial species that flowers after 5-8 years of vegetative growth signaling the end of the plant's life cycle. When fertilization is unsuccessful, vegetative bulbils are induced on the umbels of the inflorescence near the bracteoles from newly formed meristems. Although the regulation of inflorescence and flower development has been described in detail for monocarpic annuals and polycarpic species, little is known at the molecular level for these processes in monocarpic perennials, and few studies have been carried out on bulbils. Histological samples revealed the early induction of umbel meristems soon after the initiation of the vegetative to inflorescence transition in A. tequilana. To identify candidate genes involved in the regulation of floral induction, a search for MADS-box transcription factor ESTs was conducted using an A. tequilana transcriptome database. Seven different MIKC MADS genes classified into 6 different types were identified based on previously characterized A. thaliana and O. sativa MADS genes and sequences from non-grass monocotyledons. Quantitative real-time PCR analysis of the seven candidate MADS genes in vegetative, inflorescence, bulbil and floral tissues uncovered novel patterns of expression for some of the genes in comparison with orthologous genes characterized in other species. In situ hybridization studies using two different genes showed expression in specific tissues of vegetative meristems and floral buds. Distinct MADS gene regulatory patterns in A. tequilana may be related to the specific reproductive strategies employed by this species.


Assuntos
Agave/metabolismo , Proteínas de Domínio MADS/metabolismo , Agave/genética , Agave/crescimento & desenvolvimento , Sequência de Aminoácidos , DNA Complementar/classificação , Flores/metabolismo , Expressão Gênica , Genes de Plantas , Proteínas de Domínio MADS/genética , Meristema/metabolismo , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
15.
Plants (Basel) ; 11(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35807709

RESUMO

The Agave genus is composed of approximately 210 species distributed from south United States to Colombia and Venezuela. Numerous Agave species have been used for the preparation of alcoholic beverages and have attracted interest in the pharmaceutical and food industry. Despite their economic importance, there are few initiatives for the improvement and selection of characteristics of interest. This is mainly due to its morphology, long lifecycles, and monocarpic nature. Micropropagation is a feasible alternative to the improvement of Agave species. It has been used for multiple purposes, including massive propagation, induction of somaclonal variation to enhance agronomic characteristics of interest, maintenance of specific genotypes, and genetic transformation using molecular techniques. In this report, we summarize the most outstanding findings regarding the micropropagation of Agave species mediated by multiple regeneration responses. We also describe the media and growth regulators for each of the previously described methods. In addition, we discuss how micropropagation has allowed the development of transformation protocols. Exploitation of this technology may be a feasible strategy to introduce genes and improve certain traits. Genetic transformation also offers an opportunity for studying molecular mechanisms. This represents advantages for optimizing production in the field and for implementing breeding programs.

16.
Plants (Basel) ; 11(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36015458

RESUMO

Plant Glycoside Hydrolase Family 32 (PGHF32) contains the fructosyltransferases and fructan exohydrolase enzymes responsible for fructan metabolism, in addition to closely related vacuolar and cell wall acid invertases. Agave species produce complex and dynamic fructan molecules (agavins) requiring 4 different fructosyltransferase activities (1-SST, 1-FFT, 6G-FFT and 6-SFT) for their synthesis. Combined analysis of RNAseq and genome data for A. tequilana led to the characterization of the genes encoding 3 fructosyltransferases for this species and support the hypothesis that no separate 6-SFT type enzyme exists in A. tequilana, suggesting that at least one of the fructosyltransferases identified may have multiple enzymatic activities. Structures for PGHF32 genes varied for A. tequilana and between other plant species but were conserved for different enzyme types within a species. The observed patterns are consistent with the formation of distinct gene structures by intron loss. Promoter analysis of the PGHF32 genes identified abundant putative regulatory motifs for light regulation and tissue-specific expression, and these regulatory mechanisms were confirmed experimentally for leaf tissue. Motifs for phytohormone response, carbohydrate metabolism and dehydration responses were also uncovered. Based on the regulatory motifs, full-length cDNAs for MYB, GATA, DOF and GBF transcription factors were identified and their phylogenetic distribution determined by comparison with other plant species. In silico expression analysis for the selected transcription factors revealed both tissue-specific and developmental patterns of expression, allowing candidates to be identified for detailed analysis of the regulation of fructan metabolism in A. tequilana at the molecular level.

17.
Plants (Basel) ; 11(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35684270

RESUMO

Resilience of growing in arid and semiarid regions and a high capacity of accumulating sugar-rich biomass with low lignin percentages have placed Agave species as an emerging bioenergy crop. Although transcriptome sequencing of fiber-producing agave species has been explored, molecular bases that control wall cell biogenesis and metabolism in agave species are still poorly understood. Here, through RNAseq data mining, we reconstructed the cellulose biosynthesis pathway and the phenylpropanoid route producing lignin monomers in A. tequilana, and evaluated their expression patterns in silico and experimentally. Most of the orthologs retrieved showed differential expression levels when they were analyzed in different tissues with contrasting cellulose and lignin accumulation. Phylogenetic and structural motif analyses of putative CESA and CAD proteins allowed to identify those potentially involved with secondary cell wall formation. RT-qPCR assays revealed enhanced expression levels of AtqCAD5 and AtqCESA7 in parenchyma cells associated with extraxylary fibers, suggesting a mechanism of formation of sclerenchyma fibers in Agave similar to that reported for xylem cells in model eudicots. Overall, our results provide a framework for understanding molecular bases underlying cell wall biogenesis in Agave species studying mechanisms involving in leaf fiber development in monocots.

18.
G3 (Bethesda) ; 12(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100386

RESUMO

Generations of farmer selection in the central Mexican highlands have produced unique maize varieties adapted to the challenges of the local environment. In addition to possessing great agronomic and cultural value, Mexican highland maize represents a good system for the study of local adaptation and acquisition of adaptive phenotypes under cultivation. In this study, we characterize a recombinant inbred line population derived from the B73 reference line and the Mexican highland maize variety Palomero Toluqueño. B73 and Palomero Toluqueño showed classic rank-changing differences in performance between lowland and highland field sites, indicative of local adaptation. Quantitative trait mapping identified genomic regions linked to effects on yield components that were conditionally expressed depending on the environment. For the principal genomic regions associated with ear weight and total kernel number, the Palomero Toluqueño allele conferred an advantage specifically in the highland site, consistent with local adaptation. We identified Palomero Toluqueño alleles associated with expression of characteristic highland traits, including reduced tassel branching, increased sheath pigmentation and the presence of sheath macrohairs. The oligogenic architecture of these three morphological traits supports their role in adaptation, suggesting they have arisen from consistent directional selection acting at distinct points across the genome. We discuss these results in the context of the origin of phenotypic novelty during selection, commenting on the role of de novo mutation and the acquisition of adaptive variation by gene flow from endemic wild relatives.


Assuntos
Adaptação Fisiológica , Zea mays , Aclimatação , Adaptação Fisiológica/genética , Genômica , Fenótipo , Zea mays/genética , Zea mays/metabolismo
19.
3 Biotech ; 11(2): 75, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33505830

RESUMO

Together with their undeniable role in the ecology of arid and semiarid ecosystems, Agave species are emerging as a model to dissect the relationships between crassulacean acid metabolism and high efficiency of light and water use, and as an energy crop for bioethanol production. Transcriptome resources from economically valuable Agaves species, such as Agave tequilana and A. salmiana, as well as hybrids for fibers, are now available, and multiple gene expression landscape analyses have been reported. Key components in molecular mechanisms underlying drought tolerance could be uncovered by analyzing gene expression patterns of roots. This study describes an efficient protocol for high-quality total RNA isolation from phenolic compounds-rich Agave roots. Our methodology involves suitable root handling and collecting in the field and using saving-time commercial kits available. RNA isolated from roots free of lignified out-layers and clean cortex showed high values of quality and integrity according to electrophoresis and microfluidics-based platform. Synthesis of long full-length cDNAs and PCR amplification tested the suitability for downstream applications of extracted RNA. The protocol was applied successfully to A. tequilana roots but can be used for other Agave species that also develop lignified epidermis/exodermis in roots.

20.
J Exp Bot ; 61(14): 4055-67, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20627900

RESUMO

Bulbil formation in Agave tequilana was analysed with the objective of understanding this phenomenon at the molecular and cellular levels. Bulbils formed 14-45 d after induction and were associated with rearrangements in tissue structure and accelerated cell multiplication. Changes at the cellular level during bulbil development were documented by histological analysis. In addition, several cDNA libraries produced from different stages of bulbil development were generated and partially sequenced. Sequence analysis led to the identification of candidate genes potentially involved in the initiation and development of bulbils in Agave, including two putative class I KNOX genes. Real-time reverse transcription-PCR and in situ hybridization revealed that expression of the putative Agave KNOXI genes occurs at bulbil initiation and specifically in tissue where meristems will develop. Functional analysis of Agave KNOXI genes in Arabidopsis thaliana showed the characteristic lobed phenotype of KNOXI ectopic expression in leaves, although a slightly different phenotype was observed for each of the two Agave genes. An Arabidopsis KNOXI (knat1) mutant line (CS30) was successfully complemented with one of the Agave KNOX genes and partially complemented by the other. Analysis of the expression of the endogenous Arabidopsis genes KNAT1, KNAT6, and AS1 in the transformed lines ectopically expressing or complemented by the Agave KNOX genes again showed different regulatory patterns for each Agave gene. These results show that Agave KNOX genes are functionally similar to class I KNOX genes and suggest that spatial and temporal control of their expression is essential during bulbil formation in A. tequilana.


Assuntos
Agave/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Plantas/genética , Agave/anatomia & histologia , Agave/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/metabolismo , Meristema/genética , Meristema/metabolismo , Dados de Sequência Molecular , Fenótipo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA