Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Mol Cell Cardiol ; 187: 101-117, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38331556

RESUMO

AIMS: The sympathetic nervous system regulates numerous critical aspects of mitochondrial function in the heart through activation of adrenergic receptors (ARs) on cardiomyocytes. Mounting evidence suggests that α1-ARs, particularly the α1A subtype, are cardioprotective and may mitigate the deleterious effects of chronic ß-AR activation by shared ligands. The mechanisms underlying these adaptive effects remain unclear. Here, we tested the hypothesis that α1A-ARs adaptively regulate cardiomyocyte oxidative metabolism in both the uninjured and infarcted heart. METHODS: We used high resolution respirometry, fatty acid oxidation (FAO) enzyme assays, substrate-specific electron transport chain (ETC) enzyme assays, transmission electron microscopy (TEM) and proteomics to characterize mitochondrial function comprehensively in the uninjured hearts of wild type and α1A-AR knockout mice and defined the effects of chronic ß-AR activation and myocardial infarction on selected mitochondrial functions. RESULTS: We found that isolated cardiac mitochondria from α1A-KO mice had deficits in fatty acid-dependent respiration, FAO, and ETC enzyme activity. TEM revealed abnormalities of mitochondrial morphology characteristic of these functional deficits. The selective α1A-AR agonist A61603 enhanced fatty-acid dependent respiration, fatty acid oxidation, and ETC enzyme activity in isolated cardiac mitochondria. The ß-AR agonist isoproterenol enhanced oxidative stress in vitro and this adverse effect was mitigated by A61603. A61603 enhanced ETC Complex I activity and protected contractile function following myocardial infarction. CONCLUSIONS: Collectively, these novel findings position α1A-ARs as critical regulators of cardiomyocyte metabolism in the basal state and suggest that metabolic mechanisms may underlie the protective effects of α1A-AR activation in the failing heart.


Assuntos
Contração Miocárdica , Infarto do Miocárdio , Animais , Camundongos , Ácidos Graxos/metabolismo , Camundongos Knockout , Mitocôndrias/metabolismo , Infarto do Miocárdio/metabolismo , Estresse Oxidativo , Receptores Adrenérgicos alfa 1/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 320(2): H725-H733, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33275531

RESUMO

α1-Adrenergic receptors (ARs) are catecholamine-activated G protein-coupled receptors (GPCRs) that are expressed in mouse and human myocardium and vasculature, and play essential roles in the regulation of cardiovascular physiology. Though α1-ARs are less abundant in the heart than ß1-ARs, activation of cardiac α1-ARs results in important biologic processes such as hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Data from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) indicate that nonselectively blocking α1-ARs is associated with a twofold increase in adverse cardiac events, including heart failure and angina, suggesting that α1-AR activation might also be cardioprotective in humans. Mounting evidence implicates the α1A-AR subtype in these adaptive effects, including prevention and reversal of heart failure in animal models by α1A agonists. In this review, we summarize recent advances in our understanding of cardiac α1A-ARs.


Assuntos
Doenças Cardiovasculares/metabolismo , Coração/inervação , Miocárdio/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Sistema Nervoso Simpático/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/uso terapêutico , Antagonistas de Receptores Adrenérgicos alfa 1/efeitos adversos , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/fisiopatologia , Humanos , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Transdução de Sinais , Sistema Nervoso Simpático/fisiopatologia
3.
Circ Res ; 125(7): 699-706, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31426700

RESUMO

RATIONALE: Gq signaling in cardiac myocytes is classically considered toxic. Targeting Gq directly to test this is problematic, because cardiac myocytes have many Gq-coupled receptors. OBJECTIVE: Test whether Gq coupling is required for the cardioprotective effects of an alpha-1A-AR (adrenergic receptor) agonist. METHODS AND RESULTS: In recombinant cells, a mouse alpha-1A-AR with a 6-residue substitution in the third intracellular loop does not couple to Gq signaling. Here we studied a knockin mouse with this alpha-1A-AR mutation. Heart alpha-1A receptor levels and antagonist affinity in the knockin were identical to wild-type. In wild-type cardiac myocytes, the selective alpha-1A agonist A61603-stimulated phosphoinositide-phospholipase C and myocyte contraction. In myocytes with the alpha-1A knockin, both A61603 effects were absent, indicating that Gq coupling was absent. Surprisingly, A61603 activation of cardioprotective ERK (extracellular signal-regulated kinase) was markedly impaired in the KI mutant myocytes, and A61603 did not protect mutant myocytes from doxorubicin toxicity in vitro. Similarly, mice with the α1A KI mutation had increased mortality after transverse aortic constriction, and A61603 did not rescue cardiac function in mice with the Gq coupling-defective alpha-1A receptor. CONCLUSIONS: Gq coupling is required for cardioprotection by an alpha-1A-AR agonist. Gq signaling can be adaptive.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Cardiotônicos/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Imidazóis/farmacologia , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Tetra-Hidronaftalenos/farmacologia , Substituição de Aminoácidos , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Fosfoinositídeo Fosfolipase C/metabolismo , Domínios Proteicos , Receptores Adrenérgicos alfa 1/química , Receptores Adrenérgicos alfa 1/genética , Transdução de Sinais
4.
Am J Physiol Heart Circ Physiol ; 316(1): H224-H232, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30412439

RESUMO

Right ventricular (RV) failure (RVF) is a serious disease with no effective treatment available. We recently reported a disease prevention study showing that chronic stimulation of α1A-adrenergic receptors (α1A-ARs), started at the time of RV injury, prevented the development of RVF. The present study used a clinically relevant disease reversal design to test if chronic α1A-AR stimulation, started after RVF was established, could reverse RVF. RVF was induced surgically by pulmonary artery constriction in mice. Two weeks after pulmonary artery constriction, in vivo RV fractional shortening as assessed by MRI was reduced by half relative to sham-operated controls (25 ± 2%, n = 27, vs. 52 ± 2%, n = 13, P < 10-11). Subsequent chronic treatment with the α1A-AR agonist A61603 for a further 2 wk resulted in a substantial recovery of RV fractional shortening (to 41 ± 2%, n = 17, P < 10-7 by a paired t-test) along with recovery of voluntary exercise capacity. Mechanistically, chronic A61603 treatment resulted in increased activation of the prosurvival kinase ERK, increased abundance of the antiapoptosis factor Bcl-2, and decreased myocyte necrosis evidenced by a decreased serum level of cardiac troponin. Moreover, A61603 treatment caused increased abundance of the antioxidant glutathione peroxidase-1, decreased level of reactive oxygen species, and decreased oxidative modification (carbonylation) of myofilament proteins. Consistent with these effects, A61603 treatment resulted in increased force development by cardiac myofilaments, which might have contributed to increased RV function. These findings suggest that the α1A-AR is a therapeutic target to reverse established RVF. NEW & NOTEWORTHY Currently, there are no effective therapies for right ventricular (RV) failure (RVF). This project evaluated a novel therapy for RVF. In a mouse model of RVF, chronic stimulation of α1A-adrenergic receptors with the agonist A61603 resulted in recovery of in vivo RV function, improved exercise capacity, reduced oxidative stress-related carbonylation of contractile proteins, and increased myofilament force generation. These results suggest that the α1A-adrenergic receptor is a therapeutic target to treat RVF.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/uso terapêutico , Antioxidantes/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Imidazóis/uso terapêutico , Tetra-Hidronaftalenos/uso terapêutico , Disfunção Ventricular Direita/tratamento farmacológico , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Antioxidantes/farmacologia , Glutationa Peroxidase/metabolismo , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Estresse Oxidativo , Carbonilação Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tetra-Hidronaftalenos/farmacologia , Troponina I/metabolismo
5.
Circ Res ; 120(7): 1103-1115, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28219977

RESUMO

RATIONALE: It is unknown whether every ventricular myocyte expresses all 5 of the cardiac adrenergic receptors (ARs), ß1, ß2, ß3, α1A, and α1B. The ß1 and ß2 are thought to be the dominant myocyte ARs. OBJECTIVE: Quantify the 5 cardiac ARs in individual ventricular myocytes. METHODS AND RESULTS: We studied ventricular myocytes from wild-type mice, mice with α1A and α1B knockin reporters, and ß1 and ß2 knockout mice. Using individual isolated cells, we measured knockin reporters, mRNAs, signaling (phosphorylation of extracellular signal-regulated kinase and phospholamban), and contraction. We found that the ß1 and α1B were present in all myocytes. The α1A was present in 60%, with high levels in 20%. The ß2 and ß3 were detected in only ≈5% of myocytes, mostly in different cells. In intact heart, 30% of total ß-ARs were ß2 and 20% were ß3, both mainly in nonmyocytes. CONCLUSION: The dominant ventricular myocyte ARs present in all cells are the ß1 and α1B. The ß2 and ß3 are mostly absent in myocytes but are abundant in nonmyocytes. The α1A is in just over half of cells, but only 20% have high levels. Four distinct myocyte AR phenotypes are defined: 30% of cells with ß1 and α1B only; 60% that also have the α1A; and 5% each that also have the ß2 or ß3. The results raise cautions in experimental design, such as receptor overexpression in myocytes that do not express the AR normally. The data suggest new paradigms in cardiac adrenergic signaling mechanisms.


Assuntos
Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos alfa/metabolismo , Receptores Adrenérgicos beta/metabolismo , Animais , Células Cultivadas , Ventrículos do Coração/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Adrenérgicos alfa/genética , Receptores Adrenérgicos beta/genética , Análise de Célula Única
6.
J Mol Cell Cardiol ; 111: 114-122, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28780067

RESUMO

RATIONALE: Quantifying cellular proteins in ventricular myocytes (MCs) is challenging due to tissue heterogeneity and the variety of cell sizes in the heart. In post-weaning cardiac ontogeny, rod-shaped MCs make up the majority of the cardiac mass while remaining a minority of cardiac cells in number. Current biochemical analyses of cardiac proteins do not correlate well the content of MC-specific proteins to cell type or size in normally developing tissue. OBJECTIVE: To develop a new large-particle fluorescent-activated cell sorting (LP-FACS) strategy for the purification of adult rod-shaped MCs. This approach is developed to enable growth-scaled measurements per-cell of the MC proteome and sarcomeric proteins (i.e. myosin heavy chain (MyHC) and alpha-actin (α-actin)) content. METHODS AND RESULTS: Individual cardiac cells were isolated from 21 to 94days old mice. An LP-FACS jet-in-air system with a 200-µm nozzle was defined for the first time to purify adult MCs. Cell-type specific immunophenotyping and sorting yielded ≥95% purity of adult MCs independently of cell morphology and size. This approach excluded other cell types and tissue contaminants from further analysis. MC proteome, MyHC and α-actin proteins were measured in linear biochemical assays normalized to cell numbers. Using the allometric coefficient α, we scaled the MC-specific rate of protein accumulation to growth post-weaning. MC-specific volumes (α=1.02) and global protein accumulation (α=0.94) were proportional (i.e. isometric) to body mass. In contrast, MyHC and α-actin accumulated at a much greater rate (i.e. hyperallometric) than body mass (α=1.79 and 2.19 respectively) and MC volumes (α=1.76 and 1.45 respectively). CONCLUSION: Changes in MC proteome and cell volumes measured in LP-FACS purified MCs are proportional to body mass post-weaning. Oppositely, MyHC and α-actin are concentrated more rapidly than what would be expected from MC proteome accumulation, cell enlargement, or animal growth alone. LP-FACS provides a new standard for adult MC purification and an approach to scale the biochemical content of specific proteins or group of proteins per cell in enlarging MCs.


Assuntos
Actinas/metabolismo , Envelhecimento/metabolismo , Separação Celular/métodos , Citometria de Fluxo/métodos , Miócitos Cardíacos/citologia , Miosinas/metabolismo , Proteoma/metabolismo , Desmame , Animais , Animais Recém-Nascidos , Peso Corporal , Tamanho Celular , Ventrículos do Coração/citologia , Imunofenotipagem , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Tamanho do Órgão , Tamanho da Partícula , Sarcômeros/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 313(6): H1109-H1118, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28822963

RESUMO

Failure of the right ventricle (RV) is a serious disease with a poor prognosis and limited treatment options. Signaling by α1-adrenergic receptors (α1-ARs), in particular the α1A-subtype, mediate cardioprotective effects in multiple heart failure models. Recent studies have shown that chronic treatment with the α1A-subtype agonist A61603 improves function and survival in a model of left ventricular failure. The goal of the present study was to determine if chronic A61603 treatment is beneficial in a RV failure model. We used tracheal instillation of the fibrogenic antibiotic bleomycin in mice to induce pulmonary fibrosis, pulmonary hypertension, and RV failure within 2 wk. Some mice were chronically treated with a low dose of A61603 (10 ng·kg-1·day-1). In the bleomycin model of RV failure, chronic A61603 treatment was associated with improved RV fractional shortening and greater in vitro force development by RV muscle preparations. Cell injury markers were reduced with A61603 treatment (serum cardiac troponin I, RV fibrosis, and expression of matrix metalloproteinase-2). RV oxidative stress was reduced (using the probes dihydroethidium and 4-hydroxynonenal). Consistent with lowered RV oxidative stress, A61603 was associated with an increased level of the cellular antioxidant superoxide dismutase 1 and a lower level of the prooxidant NAD(P)H oxidase isoform NOX4. In summary, in the bleomycin model of RV failure, chronic A61603 treatment reduced RV oxidative stress, RV myocyte necrosis, and RV fibrosis and increased both RV function and in vitro force development. These findings suggest that in the context of pulmonary fibrosis, the α1A-subtype is a potential therapeutic target to treat the failing RV.NEW & NOTEWORTHY Right ventricular (RV) failure is a serious disease with a poor prognosis and no effective treatments. In the mouse bleomycin model of RV failure, we tested the efficacy of a treatment using the α1A-adrenergic receptor subtype agonist A61603. Chronic A61603 treatment improved RV contraction and reduced multiple indexes of RV injury, suggesting that the α1A-subtype is a therapeutic target to treat RV failure.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Cardiotônicos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Ventrículos do Coração/efeitos dos fármacos , Imidazóis/farmacologia , Contração Miocárdica/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Tetra-Hidronaftalenos/farmacologia , Disfunção Ventricular Direita/prevenção & controle , Função Ventricular Direita/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Bleomicina , Modelos Animais de Doenças , Fibrose , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , NADPH Oxidase 4/metabolismo , Necrose , Estresse Oxidativo/efeitos dos fármacos , Fibrose Pulmonar/complicações , Receptores Adrenérgicos alfa 1/metabolismo , Recuperação de Função Fisiológica , Superóxido Dismutase-1/metabolismo , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia , Remodelação Ventricular/efeitos dos fármacos
8.
Pharmacol Rev ; 66(1): 308-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24368739

RESUMO

Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate "inside-out" signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure.


Assuntos
Coração/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Animais , Cardiopatias/fisiopatologia , Humanos , Miócitos Cardíacos/metabolismo , Transdução de Sinais
9.
Am J Physiol Heart Circ Physiol ; 309(5): H888-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26116709

RESUMO

Dysfunction of the right ventricle (RV) is closely related to prognosis for patients with RV failure. Therefore, strategies to improve failing RV function are significant. In a mouse RV failure model, we previously reported that α1-adrenergic receptor (α1-AR) inotropic responses are increased. The present study determined the roles of both predominant cardiac α1-AR subtypes (α1A and α1B) in upregulated inotropy in failing RV. We used the mouse model of bleomycin-induced pulmonary fibrosis, pulmonary hypertension, and RV failure. We assessed the myocardial contractile response in vitro to stimulation of the α1A-subtype (using α1A-subtype-selective agonist A61603) and α1B-subtype [using α1A-subtype knockout mice and nonsubtype selective α1-AR agonist phenylephrine (PE)]. In wild-type nonfailing RV, a negative inotropic effect of α1-AR stimulation with PE (force decreased ≈50%) was switched to a positive inotropic effect (PIE) with bleomycin-induced RV injury. Upregulated inotropy in failing RV occurred with α1A-subtype stimulation (force increased ≈200%), but not with α1B-subtype stimulation (force decreased ≈50%). Upregulated inotropy mediated by the α1A-subtype involved increased activator Ca(2+) transients and increased phosphorylation of myosin regulatory light chain (a mediator of increased myofilament Ca(2+) sensitivity). In failing RV, the PIE elicited by the α1A-subtype was appreciably less when the α1A-subtype was stimulated in combination with the α1B-subtype, suggesting functional antagonism between α1A- and α1B-subtypes. In conclusion, upregulation of α1-AR inotropy in failing RV myocardium requires the α1A-subtype and is opposed by the α1B-subtype. The α1A subtype might be a therapeutic target to improve the function of the failing RV.


Assuntos
Insuficiência Cardíaca/metabolismo , Contração Miocárdica , Receptores Adrenérgicos alfa 1/metabolismo , Disfunção Ventricular Direita/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Sinalização do Cálcio , Células Cultivadas , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Miosinas/metabolismo , Receptores Adrenérgicos alfa 1/classificação , Receptores Adrenérgicos alfa 1/genética , Disfunção Ventricular Direita/fisiopatologia
10.
Am J Physiol Heart Circ Physiol ; 307(8): H1150-8, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128171

RESUMO

After myocardial infarction, a poorly contracting nonischemic border zone forms adjacent to the infarct. The cause of border zone dysfunction is unclear. The goal of this study was to determine the myofilament mechanisms involved in postinfarction border zone dysfunction. Two weeks after anteroapical infarction of sheep hearts, we studied in vitro isometric and isotonic contractions of demembranated myocardium from the infarct border zone and a zone remote from the infarct. Maximal force development (Fmax) of the border zone myocardium was reduced by 31 ± 2% versus the remote zone myocardium (n = 6/group, P < 0.0001). Decreased border zone Fmax was not due to a reduced content of contractile material, as assessed histologically, and from myosin content. Furthermore, decreased border zone Fmax did not involve altered cross-bridge kinetics, as assessed by muscle shortening velocity and force development kinetics. Decreased border zone Fmax was associated with decreased cross-bridge formation, as assessed from muscle stiffness in the absence of ATP where cross-bridge formation should be maximized (rigor stiffness was reduced 34 ± 6%, n = 5, P = 0.011 vs. the remote zone). Furthermore, the border zone myocardium had significantly reduced phosphorylation of myosin essential light chain (ELC; 41 ± 10%, n = 4, P < 0.05). However, for animals treated with doxycycline, an inhibitor of matrix metalloproteinases, rigor stiffness and ELC phosphorylation were not reduced in the border zone myocardium, suggesting that doxycycline had a protective effect. In conclusion, myofilament dysfunction contributes to postinfarction border zone dysfunction, myofilament dysfunction involves impaired cross-bridge formation and decreased ELC phosphorylation, and matrix metalloproteinase inhibition may be beneficial for limiting postinfarct border zone dysfunction.


Assuntos
Contração Miocárdica , Infarto do Miocárdio/fisiopatologia , Miofibrilas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Doxiciclina/farmacologia , Masculino , Inibidores de Metaloproteinases de Matriz/farmacologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miofibrilas/efeitos dos fármacos , Cadeias Leves de Miosina/metabolismo , Fosforilação , Ovinos
12.
J Cardiovasc Pharmacol ; 63(4): 291-301, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24145181

RESUMO

Alpha-1-adrenergic receptors (ARs) are G protein-coupled receptors activated by catecholamines. The alpha-1A and alpha-1B subtypes are expressed in mouse and human myocardium, whereas the alpha-1D protein is found only in coronary arteries. There are far fewer alpha-1-ARs than beta-ARs in the nonfailing heart, but their abundance is maintained or increased in the setting of heart failure, which is characterized by pronounced chronic elevation of catecholamines and beta-AR dysfunction. Decades of evidence from gain and loss-of-function studies in isolated cardiac myocytes and numerous animal models demonstrate important adaptive functions for cardiac alpha-1-ARs to include physiological hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Clinical trial data indicate that blocking alpha-1-ARs is associated with incident heart failure in patients with hypertension. Collectively, these findings suggest that alpha-1-AR activation might mitigate the well-recognized toxic effects of beta-ARs in the hyperadrenergic setting of chronic heart failure. Thus, exogenous cardioselective activation of alpha-1-ARs might represent a novel and viable approach to the treatment of heart failure.


Assuntos
Catecolaminas/fisiologia , Insuficiência Cardíaca/fisiopatologia , Coração/fisiopatologia , Receptores Adrenérgicos alfa 1/fisiologia , Antagonistas de Receptores Adrenérgicos alfa 1/efeitos adversos , Animais , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Humanos , Camundongos , Camundongos Knockout , Receptores Adrenérgicos alfa 1/classificação , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/genética
13.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38826209

RESUMO

Locus coeruleus (LC)-derived norepinephrine (NE) drives network and behavioral adaptations to environmental saliencies by reconfiguring circuit connectivity, but the underlying synapse-level mechanisms are elusive. Here, we show that NE remodeling of synaptic function is independent from its binding on neuronal receptors. Instead, astrocytic adrenergic receptors and Ca2+ dynamics fully gate the effect of NE on synapses as the astrocyte-specific deletion of adrenergic receptors and three independent astrocyte-silencing approaches all render synapses insensitive to NE. Additionally, we find that NE suppression of synaptic strength results from an ATP-derived and adenosine A1 receptor-mediated control of presynaptic efficacy. An accompanying study from Chen et al. reveals the existence of an analogous pathway in the larval zebrafish and highlights its importance to behavioral state transitions. Together, these findings fuel a new model wherein astrocytes are a core component of neuromodulatory systems and the circuit effector through which norepinephrine produces network and behavioral adaptations, challenging an 80-year-old status quo.

14.
JACC Basic Transl Sci ; 9(1): 78-96, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38362342

RESUMO

Clinical studies have shown that α1-adrenergic receptor antagonists (α-blockers) are associated with increased heart failure risk. The mechanism underlying that hazard and whether it arises from direct inhibition of cardiomyocyte α1-ARs or from systemic effects remain unclear. To address these issues, we created a mouse with cardiomyocyte-specific deletion of the α1A-AR subtype and found that it experienced 70% mortality within 7 days of myocardial infarction driven, in part, by excessive activation of necroptosis. We also found that patients taking α-blockers at our center were at increased risk of death after myocardial infarction, providing clinical correlation for our translational animal models.

15.
Am J Physiol Heart Circ Physiol ; 304(7): H946-53, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23355341

RESUMO

α1-Adrenergic receptors (α1-ARs) elicit a negative inotropic effect (NIE) in the mouse right ventricular (RV) myocardium but a positive inotropic effect (PIE) in the left ventricular (LV) myocardium. Effects on myofilament Ca(2+) sensitivity play a role, but effects on Ca(2+) handling could also contribute. We monitored the effects of α1-AR stimulation on contraction and Ca(2+) transients using single myocytes isolated from the RV or LV. Interestingly, for both the RV and LV, we found heterogeneous myocyte inotropic responses. α1-ARs mediated either a PIE or NIE, although RV myocytes had a greater proportion of cells manifesting a NIE (68%) compared with LV myocytes (36%). Stimulation of a single α1-AR subtype (α1A-ARs) with a subtype-selective agonist also elicited heterogeneous inotropic responses, suggesting that the heterogeneity arose from events downstream of the α1A-AR subtype. For RV and LV myocytes, an α1-AR-mediated PIE was associated with an increased Ca(2+) transient and a NIE was associated with a decreased Ca(2+) transient, suggesting a key role for Ca(2+) handling. For RV and LV myocytes, α1-AR-mediated decreases in the Ca(2+) transient were associated with increased Ca(2+) export from the cell and decreased Ca(2+) content of the sarcoplasmic reticulum. In contrast, for myocytes with α1-AR-induced increased Ca(2+) transients, sarcoplasmic reticulum Ca(2+) content was not increased, suggesting that other mechanisms contributed to the increased Ca(2+) transients. This study demonstrates the marked heterogeneity of LV and RV cellular inotropic responses to stimulation of α1-ARs and reveals a new aspect of biological heterogeneity among myocytes in the regulation of contraction.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Ventrículos do Coração/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Retículo Sarcoplasmático/metabolismo
16.
Circ Res ; 109(6): 629-38, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21778428

RESUMO

RATIONALE: Induction of the fetal hypertrophic marker gene ß-myosin heavy chain (ß-MyHC) is a signature feature of pressure overload hypertrophy in rodents. ß-MyHC is assumed present in all or most enlarged myocytes. OBJECTIVE: To quantify the number and size of myocytes expressing endogenous ß-MyHC by a flow cytometry approach. METHODS AND RESULTS: Myocytes were isolated from the left ventricle of male C57BL/6J mice after transverse aortic constriction (TAC), and the fraction of cells expressing endogenous ß-MyHC was quantified by flow cytometry on 10,000 to 20,000 myocytes with use of a validated ß-MyHC antibody. Side scatter by flow cytometry in the same cells was validated as an index of myocyte size. ß-MyHC-positive myocytes constituted 3 ± 1% of myocytes in control hearts (n=12), increasing to 25 ± 10% at 3 days to 6 weeks after TAC (n=24, P<0.01). ß-MyHC-positive myocytes did not enlarge with TAC and were smaller at all times than myocytes without ß-MyHC (≈70% as large, P<0.001). ß-MyHC-positive myocytes arose by addition of ß-MyHC to α-MyHC and had more total MyHC after TAC than did the hypertrophied myocytes that had α-MyHC only. Myocytes positive for ß-MyHC were found in discrete regions of the left ventricle in 3 patterns: perivascular, in areas with fibrosis, and in apparently normal myocardium. CONCLUSIONS: ß-MyHC protein is induced by pressure overload in a minor subpopulation of smaller cardiac myocytes. The hypertrophied myocytes after TAC have α-MyHC only. These data challenge the current paradigm of the fetal hypertrophic gene program and identify a new subpopulation of smaller working ventricular myocytes with more myosin.


Assuntos
Hipertrofia Ventricular Esquerda/metabolismo , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/biossíntese , Pressão Ventricular/fisiologia , Animais , Animais Recém-Nascidos , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Citometria de Fluxo/métodos , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica/fisiologia , Miócitos Cardíacos/patologia , Miosinas Ventriculares/fisiologia
17.
Nat Neurosci ; 26(4): 579-593, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36997759

RESUMO

Cortical state, defined by population-level neuronal activity patterns, determines sensory perception. While arousal-associated neuromodulators-including norepinephrine (NE)-reduce cortical synchrony, how the cortex resynchronizes remains unknown. Furthermore, general mechanisms regulating cortical synchrony in the wake state are poorly understood. Using in vivo imaging and electrophysiology in mouse visual cortex, we describe a critical role for cortical astrocytes in circuit resynchronization. We characterize astrocytes' calcium responses to changes in behavioral arousal and NE, and show that astrocytes signal when arousal-driven neuronal activity is reduced and bi-hemispheric cortical synchrony is increased. Using in vivo pharmacology, we uncover a paradoxical, synchronizing response to Adra1a receptor stimulation. We reconcile these results by demonstrating that astrocyte-specific deletion of Adra1a enhances arousal-driven neuronal activity, while impairing arousal-related cortical synchrony. Our findings demonstrate that astrocytic NE signaling acts as a distinct neuromodulatory pathway, regulating cortical state and linking arousal-associated desynchrony to cortical circuit resynchronization.


Assuntos
Astrócitos , Norepinefrina , Camundongos , Animais , Astrócitos/metabolismo , Norepinefrina/metabolismo , Neurônios/fisiologia , Nível de Alerta/fisiologia , Neurotransmissores/metabolismo
19.
J Mol Cell Cardiol ; 51(4): 518-28, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21118696

RESUMO

Evidence from cell, animal, and human studies demonstrates that α1-adrenergic receptors mediate adaptive and protective effects in the heart. These effects may be particularly important in chronic heart failure, when catecholamine levels are elevated and ß-adrenergic receptors are down-regulated and dysfunctional. This review summarizes these data and proposes that selectively activating α1-adrenergic receptors in the heart might represent a novel and effective way to treat heart failure. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Modelos Animais de Doenças , Coração/efeitos dos fármacos , Coração/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Terapia de Alvo Molecular , Miocárdio/metabolismo , Receptores Adrenérgicos alfa 1/genética , Pesquisa Translacional Biomédica
20.
Mol Pharmacol ; 80(4): 747-58, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21791575

RESUMO

The role of α(1)-adrenergic receptors (α(1)ARs) in cognition and mood is controversial, probably as a result of past use of nonselective agents. α(1A)AR activation was recently shown to increase neurogenesis, which is linked to cognition and mood. We studied the effects of long-term α(1A)AR stimulation using transgenic mice engineered to express a constitutively active mutant (CAM) form of the α(1A)AR. CAM-α(1A)AR mice showed enhancements in several behavioral models of learning and memory. In contrast, mice that have the α(1A)AR gene knocked out displayed poor cognitive function. Hippocampal brain slices from CAM-α(1A)AR mice demonstrated increased basal synaptic transmission, paired-pulse facilitation, and long-term potentiation compared with wild-type (WT) mice. WT mice treated with the α(1A)AR-selective agonist cirazoline also showed enhanced cognitive functions. In addition, CAM-α(1A)AR mice exhibited antidepressant and less anxious phenotypes in several behavioral tests compared with WT mice. Furthermore, the lifespan of CAM-α(1A)AR mice was 10% longer than that of WT mice. Our results suggest that long-term α(1A)AR stimulation improves synaptic plasticity, cognitive function, mood, and longevity. This may afford a potential therapeutic target for counteracting the decline in cognitive function and mood associated with aging and neurological disorders.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Afeto/fisiologia , Cognição/fisiologia , Longevidade/fisiologia , Plasticidade Neuronal/fisiologia , Receptores Adrenérgicos alfa 1/metabolismo , Afeto/efeitos dos fármacos , Animais , Cognição/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Longevidade/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Receptores Adrenérgicos alfa 1/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA