Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Phys Chem Chem Phys ; 12(27): 7418-26, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20544090

RESUMO

We consider here the non-adiabatic energy transfer dynamics for a model bi-chromophore system consisting of a perylenemonoimide unit linked to a ladder-type poly(para-phenylene) oligomer. Starting from a semi-empirical parameterization of a model electron/phonon Hamiltonian, we compute the golden-rule rate for energy transfer from the LPPP5 donor to the PMI acceptor. Our results indicate that the non-adiabatic transfer is promoted by the out-of-plane wagging modes of the C-H bonds even though theses modes give little or no contribution to the Franck-Condon factors in this system. We also predict a kinetic isotope effect of k((H))/k((D)) = 1.7-2.5 depending upon the temperature.

2.
J Chem Phys ; 131(19): 194905, 2009 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-19929074

RESUMO

We report upon a theoretical study of singlet exciton migration and relaxation within a model conjugated polymer chain. Starting from poly[2-methoxy-5-((2-ethylhexyl)oxy)-1,4-phenylenevinylene] polymer chains, we assume that the pi-conjugation is disrupted by conformational disorder of the chain itself, giving rise to a localized Frenkel exciton basis. Electronic coupling between segments as determined by the coupling between the transition densities of the localized excitons gives rise to delocalized exciton states. Using a kinetic Monte Carlo approach to compute the exciton transfer kinetics within the manifold of either the dressed chromophore site basis or dressed eigenstate basis, we find that the decay of the polarization anisotropy of the exciton is profoundly affected by the delocalization of the exciton over multiple basis segments. Two time scales emerge from the exciton migration simulations: a short, roughly 10 ps, time scale corresponding to rapid hopping about the initial excitation site followed by a slower, 180 ps, component corresponding to long range hopping. We also find that excitations can become trapped at long times when the hopping rate to lower-energy states is longer than the radiative lifetime of the exciton.

3.
J Biomech ; 93: 147-158, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31331663

RESUMO

Peripheral artery disease (PAD) is associated with an increased risk of adverse cardiovascular events, impaired lower extremity blood flow and microvascular perfusion abnormalities in the calf muscles which can be determined with contrast-enhanced magnetic resonance imaging (CE-MRI). We developed a computational model of the microvascular perfusion in the calf muscles. We included 20 patients (10 PAD, 10 controls) and utilized the geometry, mean signal intensity and arterial input functions from CE-MRI calf muscle perfusion scans. The model included the microvascular pressure (pv), outflow filtration coefficient (OFC), transfer rate constant (kt), porosity (φ), and the interstitial permeability (Ktissue). Parameters were fitted and the simulations were compared across PAD patients and controls. Intra-observer reproducibility of the simulated mean signal intensities was excellent (intraclass correlation coefficients >0.995). kt and Ktissue were higher in PAD patients compared with controls (4.72 interquartile range (IQR) 3.33, 5.56 vs. 2.47 IQR 2.10, 2.85; p = 0.003; and 3.68 IQR 3.18, 4.41 vs. 1.81 IQR 1.81, 1.81; p < 0.001). Conversely, porosity (φ) was lower in PAD patients compared with controls (0.52 IQR 0.49, 0.54 vs. 0.61 IQR 0.58, 0.64; p = 0.016). Porosity (φ) was correlated with the ankle brachial index (r = 0.64, p = 0.011). The proposed computational microvascular model is robust and reproducible, and essential model parameters differ significantly between PAD patients and controls.


Assuntos
Imageamento por Ressonância Magnética , Microvasos/fisiopatologia , Doença Arterial Periférica/diagnóstico por imagem , Doença Arterial Periférica/fisiopatologia , Fluxo Sanguíneo Regional , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/irrigação sanguínea , Reprodutibilidade dos Testes
4.
Artigo em Inglês | MEDLINE | ID: mdl-29503774

RESUMO

BACKGROUND AND AIMS: MRI-based hemodynamics have been applied to study the relationship between time-averaged wall shear stresses (TAWSS), oscillatory shear index (OSI) and atherosclerotic lesions in the coronary arteries, carotid artery, and human aorta. However, the role of TAWSS and OSI are poorly understood in lower extremity arteries. The aim of this work was to investigate the feasibility of hemodynamic assessment of the superficial femoral artery (SFA) in patients with peripheral artery disease (PAD) and we hypothesized that there is an association between TAWSS and OSI, respectively, and atherosclerotic burden expressed as the normalized wall index (NWI). METHODS: Six cases of 3D vascular geometries of the SFA and related inlet/outlet flow conditions were extracted from patient-specific MRI data including baseline, 12 and 24 months. Blood flow simulations were performed to compute flow descriptors, including TAWSS and OSI, and NWI. RESULTS: NWI was correlated positively with TAWSS (correlation coefficient: r = 0.592; p < 0.05). NWI was correlated negatively with OSI (correlation coefficient: r = -0.310, p < 0.01). Spatially averaged TAWSS and average NWI increased significantly between baseline and 24-months, whereas OSI decreased over 2-years. CONCLUSIONS: In this pilot study with a limited sample size, TAWSS was positively associated with NWI, a measure of plaque burden, whereas OSI showed an inverse relationship. However, our findings need to be verified in a larger prospective study. MRI-based study of hemodynamics is feasible in the superficial femoral artery.

5.
Adv Healthc Mater ; 6(13)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28402587

RESUMO

Atherosclerosis is an inflammatory disorder characterized by the progressive thickening of blood vessel walls eventually resulting in acute vascular syndromes. Here, intravenously injectable hybrid nanoconstructs are synthesized for tempering immune cell inflammation locally and systemically. Lipid and polymer chains are nanoprecipitated to form 100 nm spherical polymeric nanoconstructs (SPNs), loaded with methotrexate (MTX) and subsequently labeled with Cu64 and fluorescent probes for combined nuclear/optical imaging. Upon engulfment into macrophages, MTX SPNs intracellularly release their anti-inflammatory cargo significantly lowering the production of proinflammatory cytokine (interleukin 6 and tumor necrosis factor α) already at 0.06 mg mL-1 of MTX. In ApoE-/- mice, fed with high-fat diet up to 17 weeks, nuclear and optical imaging demonstrates specific accumulation of SPNs within lipid-rich plaques along the arterial tree. Histological analyses confirm SPN uptake into macrophages residing within atherosclerotic plaques. A 4-week treatment with biweekly administration of MTX SPNs is sufficient to reduce the plaque burden in ApoE-/- mice by 50%, kept on high-fat diet for 10 weeks. Systemic delivery of MTX to macrophages via multifunctional, hybrid nanoconstructs constitutes an effective strategy to inhibit atherosclerosis progression and induce, potentially, the resorption of vascular lesions.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/tratamento farmacológico , Metotrexato , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Radioisótopos de Cobre/química , Radioisótopos de Cobre/farmacocinética , Radioisótopos de Cobre/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Interleucina-6/metabolismo , Metotrexato/química , Metotrexato/farmacocinética , Metotrexato/farmacologia , Camundongos , Camundongos Knockout , Imagem Óptica/métodos , Fator de Necrose Tumoral alfa/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-23656190

RESUMO

Cell-cell and cell-matrix adhesions are fundamental to numerous physiological processes, including angiogenesis, tumourigenesis, metastatic spreading and wound healing. We use cellular potts model to computationally predict the organisation of cells within a 3D matrix. The energy potentials regulating cell-cell (JCC) and cell-matrix (JMC) adhesive interactions are systematically varied to represent different, biologically relevant adhesive conditions. Chemotactically induced cell migration is also addressed. Starting from a cluster of cells, variations in relative cell adhesion alone lead to different cellular patterns such as spreading of metastatic tumours and angiogenesis. The combination of low cell-cell adhesion (high JCC) and high heterotypic adhesion (low JMC) favours the fragmentation of the original cluster into multiple, smaller cell clusters (metastasis). Conversely, cellular systems exhibiting high-homotypic affinity (low JCC) preserve their original configuration, avoiding fragmentation (organogenesis). For intermediate values of JCC and JMC (i.e. JCC/JMC ∼ 1), tubular and corrugated structures form. Fully developed vascular trees are assembled only in systems in which contact-inhibited chemotaxis is activated upon cell contact. Also, the rate of secretion, diffusion and sequestration of chemotactic factors, cell deformability and motility do not significantly affect these trends. Further developments of this computational model will predict the efficacy of therapeutic interventions to modulate the diseased microenvironment by directly altering cell cohesion.


Assuntos
Quimiotaxia , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica , Adesão Celular/fisiologia , Linhagem Celular , Humanos , Imageamento Tridimensional , Metástase Neoplásica
7.
J R Soc Interface ; 12(106)2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25878124

RESUMO

Peripheral arterial disease (PAD) is generally attributed to the progressive vascular accumulation of lipoproteins and circulating monocytes in the vessel walls leading to the formation of atherosclerotic plaques. This is known to be regulated by the local vascular geometry, haemodynamics and biophysical conditions. Here, an isogeometric analysis framework is proposed to analyse the blood flow and vascular deposition of circulating nanoparticles (NPs) into the superficial femoral artery (SFA) of a PAD patient. The local geometry of the blood vessel and the haemodynamic conditions are derived from magnetic resonance imaging (MRI), performed at baseline and at 24 months post intervention. A dramatic improvement in blood flow dynamics is observed post intervention. A 500% increase in peak flow rate is measured in vivo as a consequence of luminal enlargement. Furthermore, blood flow simulations reveal a 32% drop in the mean oscillatory shear index, indicating reduced disturbed flow post intervention. The same patient information (vascular geometry and blood flow) is used to predict in silico in a simulation of the vascular deposition of systemically injected nanomedicines. NPs, targeted to inflammatory vascular molecules including VCAM-1, E-selectin and ICAM-1, are predicted to preferentially accumulate near the stenosis in the baseline configuration, with VCAM-1 providing the highest accumulation (approx. 1.33 and 1.50 times higher concentration than that of ICAM-1 and E-selectin, respectively). Such selective deposition of NPs within the stenosis could be effectively used for the detection and treatment of plaques forming in the SFA. The presented MRI-based computational protocol can be used to analyse data from clinical trials to explore possible correlations between haemodynamics and disease progression in PAD patients, and potentially predict disease occurrence as well as the outcome of an intervention.


Assuntos
Artérias/química , Artérias/fisiopatologia , Aterosclerose/fisiopatologia , Angiografia por Ressonância Magnética/métodos , Modelos Cardiovasculares , Nanopartículas/química , Absorção Fisico-Química , Artérias/patologia , Aterosclerose/tratamento farmacológico , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Monitoramento de Medicamentos/métodos , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Nanopartículas/administração & dosagem , Resultado do Tratamento
8.
ACS Nano ; 9(12): 11628-41, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26488177

RESUMO

Most nanoparticles for biomedical applications originate from the self-assembling of individual constituents through molecular interactions and possess limited geometry control and stability. Here, 1000 × 400 nm discoidal polymeric nanoconstructs (DPNs) are demonstrated by mixing hydrophobic and hydrophilic polymers with lipid chains and curing the resulting paste directly within silicon templates. By changing the paste composition, soft- and rigid-DPNs (s- and r-DPNs) are synthesized exhibiting the same geometry, a moderately negative surface electrostatic charge (-14 mV), and different mechanical stiffness (∼1.3 and 15 kPa, respectively). Upon injection in mice bearing nonorthotopic brain or skin cancers, s-DPNs exhibit ∼24 h circulation half-life and accumulate up to ∼20% of the injected dose per gram tumor, detecting malignant masses as small as ∼0.1% the animal weight via PET imaging. This unprecedented behavior is ascribed to the unique combination of geometry, surface properties, and mechanical stiffness which minimizes s-DPN sequestration by the mononuclear phagocyte system. Our results could boost the interest in using less conventional delivery systems for cancer theranosis.


Assuntos
Macrófagos/metabolismo , Imagem Molecular/métodos , Nanopartículas/química , Neovascularização Patológica/patologia , Polímeros/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Feminino , Compostos Férricos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Nus , Camundongos Transgênicos , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neovascularização Patológica/metabolismo
9.
ACS Nano ; 8(5): 4268-83, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24738788

RESUMO

Several studies propose nanoparticles for tumor treatment, yet little is known about the fate of nanoparticles and intimate interactions with the heterogeneous and ever-evolving tumor environment. The latter, rich in extracellular matrix, is responsible for poor penetration of therapeutics and represents a paramount issue in cancer therapy. Hence new strategies start aiming to modulate the neoplastic stroma. From this perspective, we assessed the efficacy of 19 nm PEG-coated iron oxide nanocubes with optimized magnetic properties to mediate mild tumor magnetic hyperthermia treatment. After injection of a low dose of nanocubes (700 µg of iron) into epidermoid carcinoma xenografts in mice, we monitored the effect of heating nanocubes on tumor environment. In comparison with the long-term fate after intravenous administration, we investigated spatiotemporal patterns of nanocube distribution, evaluated the evolution of cubes magnetic properties, and examined nanoparticle clearance and degradation processes. While inside tumors nanocubes retained their magnetic properties and heating capacity throughout the treatment due to a mainly interstitial extracellular location, the particles became inefficient heaters after cell internalization and transfer to spleen and liver. Our multiscale analysis reveals that collagen-rich tumor extracellular matrix confines the majority of nanocubes. However, nanocube-mediated hyperthermia has the potential to "destructure" this matrix and improve nanoparticle and drug penetration into neoplastic tissue. This study provides insight into dynamic interactions between nanoparticles and tumor components under physical stimulation and suggests that nanoparticle-mediated hyperthermia could be used to locally modify tumor stroma and thus improve drug penetration.


Assuntos
Compostos Férricos/química , Nanopartículas Metálicas/química , Neoplasias/patologia , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Colágeno/química , Espectroscopia de Ressonância de Spin Eletrônica , Matriz Extracelular/metabolismo , Feminino , Temperatura Alta , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Imageamento por Ressonância Magnética , Magnetismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Microscopia Eletrônica de Transmissão , Nanomedicina/métodos , Nanopartículas/química , Neoplasias/metabolismo , Polietilenoglicóis/química , Baço/efeitos dos fármacos , Baço/metabolismo
10.
BMC Syst Biol ; 7 Suppl 2: S12, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24564919

RESUMO

BACKGROUND: Recent reports indicate that a subgroup of tumor cells named cancer stem cells (CSCs) or tumor initiating cells (TICs) are responsible for tumor initiation, growth and drug resistance. This subgroup of tumor cells has self-renewal capacity and could differentiate into heterogeneous tumor cell populations through asymmetric proliferation. The idea of CSC provides informative insights into tumor initiation, metastasis and treatment. However, the underlying mechanisms of CSCs regulating tumor behaviors are unclear due to the complex cancer system. To study the functions of CSCs in the complex tumor system, a few mathematical modeling studies have been proposed. Whereas, the effect of microenvironment (mE) factors, the behaviors of CSCs, progenitor tumor cells (PCs) and differentiated tumor cells (TCs), and the impact of CSC fraction and signaling heterogeneity, are not adequately explored yet. METHODS: In this study, a novel 3D multi-scale mathematical modeling is proposed to investigate the behaviors of CSCsin tumor progressions. The model integrates CSCs, PCs, and TCs together with a few essential mE factors. With this model, we simulated and investigated the tumor development and drug response under different CSC content and heterogeneity. RESULTS: The simulation results shown that the fraction of CSCs plays a critical role in driving the tumor progression and drug resistance. It is also showed that the pure chemo-drug treatment was not a successful treatment, as it resulted in a significant increase of the CSC fraction. It further shown that the self-renew heterogeneity of the initial CSC population is a cause of the heterogeneity of the derived tumors in terms of the CSC fraction and response to drug treatments. CONCLUSIONS: The proposed 3D multi-scale model provides a new tool for investigating the behaviors of CSC in CSC-initiated tumors, which enables scientists to investigate and generate testable hypotheses about CSCs in tumor development and drug response under different microenvironments and drug perturbations.


Assuntos
Carcinogênese , Modelos Biológicos , Células-Tronco Neoplásicas/patologia , Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Resultado do Tratamento
11.
Front Oncol ; 2: 161, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23162792

RESUMO

The spreading of tumor cells to secondary sites (tumor metastasis) is a complex process that involves multiple, sequential steps. Vascular adhesion and extravasation of circulating tumor cells (CTCs) is one, critical step. Curcumin, a natural compound extracted from Curcuma longa, is known to have anti-tumoral, anti-proliferative, anti-inflammatory properties and affect the expression of cell adhesion molecules, mostly by targeting the NF-κB transcription factor. Here, upon treatment with curcumin, the vascular behavior of three different estrogen receptor negative (ER(-)) breast adenocarcinoma cell lines (SK-BR-3, MDA-MB-231, MDA-MB-468) is analyzed using a microfluidic system. First, the dose response to curcumin is characterized at 24, 48, and 72 h using a XTT assay. For all three cell lines, an IC(50) larger than 20 µM is observed at 72 h; whereas no significant reduction in cell viability is detected for curcumin concentrations up to 10 µM. Upon 24 h treatment at 10 µM of curcumin, SK-BR3 and MDA-MB-231 cells show a decrease in adhesion propensity of 40% (p = 0.02) and 47% (p = 0.001), respectively. No significant change is documented for the less metastatic MDA-MB-468 cells. All three treated cell lines show a 20% increase in rolling velocity from 48.3 to 58.7 µm/s in SK-BR-3, from 64.1 to 73.77 µm/s in MDA-MB-231, and from 57.5 to 74.4 µm/s in MDA-MB-468. Collectively, these results suggest that mild curcumin treatments could limit the metastatic potential of these adenocarcinoma cell lines, possibly by altering the expression of adhesion molecules, and the organization and stiffness of the cell cytoskeleton. Future studies will elucidate the biophysical mechanisms regulating this curcumin-induced behavior and further explore the clinical relevance of these findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA