Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Indian J Microbiol ; 62(1): 70-78, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35068606

RESUMO

Spent petroleum catalyst as a repository of several toxic metals is recommended for metal removal before safe disposal. To evaluate an effective biotechnological approach for metal removal, a comparative study between sequential-aerobic and sequential-anaerobic bioleaching processes was conducted for the removal of metals from crushed-acetone-pretreated spent petroleum catalyst. The SEM-EDX and XPS analysis confirmed the presence of Ni, Al, Mo and V in their oxidic and sulphidic forms in spent catalyst. The bioleaching experiments were performed in stirred tank batch reactors (2.5 L), temperature 30 °C, pH 1.4 and stirring speed 250 rpm for the period of 160 h. Sulfuric acid acted as lechant for both sequential-aerobic (Acidithiobacillus ferrooxidans oxidised sulfur to sulfuric acid aerobically) and sequential-anaerobic (Acidithiobacillus ferrooxidans oxidised sulphur to sulfuric acid coupled with the ferric reduction to ferrous anaerobically) bioleaching studies. The higher Ni and V extractions compared to Al and Mo for all the studies were due to increased solubility of Ni and V, and supported by XPS which showed marginal signs of Ni and V peaks in leach residues compared to feed spent catalyst. At the end (320 h), sequential-aerobic bioleaching was resulted to 99% Ni, 65% Al, 90% Mo and 99% V extraction quite more effective than sequential-anaerobic bioleaching (88% Ni, 28% Al, 33% Mo and 77% V) and sequential-control leaching (94% Ni, 20% Al, 40% Mo and 57% V). Although anaerobic bioleaching a possible approach, aerobic condition was found to be more suitable for sulfuric acid generation by A. ferrooxidans and high yield. So aerobic bioleaching is recommended to be favourable approach compared to anaerobic counterpart for future study and extrapolation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12088-021-00978-8.

2.
Ecotoxicol Environ Saf ; 192: 110321, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32061978

RESUMO

Day to day consumption of black pepper raise concern about the detailed information about their medicinal, pharmaceutical values and knowledge about the biocompatibility with respect to ecosystem. This study investigates the in vivo selective molecular biocompatibility of its seed cover (SC) and seed core (SP) powder extract using embryonic zebrafish model. Gas chromatography mass spectrometry (GCMS) analysis of the extract prepared by grinding showed presence of different components with "piperine" as principle component. Biocompatibility analysis showed dose and time dependent selective effect of SC and SP with LC50 of 30.4 µg/ml and 35.6 µg/ml, respectively on survivability, hatching and heartbeat rate in embryonic zebrafish. Mechanistic investigation elucidated it as effect of accumulation and internalization of black pepper leading to their influence on structure and function of cellular proteins hatching enzyme (he1a), superoxide dismutase (sod1) and tumor protein (tp53) responsible for delayed hatching, oxidative stress induction and apoptosis. The study provided insight to selective biocompatibility of black pepper expedient to produce higher quality spices with respect to pharmaceutical, clinical and environmental aspects.


Assuntos
Alcaloides/química , Apoptose/efeitos dos fármacos , Benzodioxóis/química , Estresse Oxidativo/efeitos dos fármacos , Piper nigrum/toxicidade , Piperidinas/química , Alcamidas Poli-Insaturadas/química , Alcaloides/análise , Animais , Benzodioxóis/análise , Piper nigrum/química , Piper nigrum/embriologia , Piperidinas/análise , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Alcamidas Poli-Insaturadas/análise , Sementes/química , Sementes/toxicidade , Superóxido Dismutase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-30663503

RESUMO

A study to compare biogas production potentials of wheat straw, sugarcane bagasse and pressmud was conducted at pH 8.0, temperature 40 °C and substrate concentration 20 g/L. Raw substrates were thermogravimetrically and Fourier-transform infrared spectroscopically characterised. TGA showed the weight loss of samples attributable to moisture, hemicellulose, cellulose and lignin losses. FTIR analysis indicated functional groups characteristics of hemicellulose, cellulose and lignin. Biogas production was the maximum between 10th and 25th day for all the tests. WS with 10% inoculum showed the highest cumulative biogas production of 370 mL/g followed by the SB (316 mL/g) and PM (211 mL/g) counterparts. The corresponding values with 5% inoculum were 303 mL/g (WS), 244 mL/g (SB) and 152 mL/g (PM). The inoculum volume also positively affected the cumulative biogas production (22.1, 29.5 and 38.8% respectively). The higher volatile fatty acids as observed in case of WS which further facilitated higher biogas production could be due to its maximum volatile solids content (88.9%) and water swelling capacity (7.37). A consistently increasing trend in the methane content (varying between 54 and 61%) in all the tests was observed till the 20th day. The biogas (7.7-21.7 mL/g) and the methane (35-42%) contents showed a decreasing trend thereafter, the lowest being observed during the 35-40-day period.


Assuntos
Biocombustíveis/análise , Celulose/química , Metano/análise , Caules de Planta/química , Saccharum/química , Triticum/química , Anaerobiose , Ácidos Graxos Voláteis/análise , Lignina/química , Polissacarídeos/química
4.
Indian J Microbiol ; 58(4): 515-519, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30262962

RESUMO

The three dimensional structure (3D structure) of GH-11 xylanase from Thermomyces lanuginosus was obtained through homology modeling. To study the enzyme interaction with an end product of enzyme catalysis, the xylanase two sugar molecules xylose and xylobiose has been docked into the active site of GH-11 xylanase through molecular docking. Based on the free binding energy and Inhibition constant, concluded xylose makes more stable complex than xylobiose. Further, the molecular dynamic simulation studies were carried out at different temperature, i.e. 323, 333, 343 and 353 K (i.e. 50, 60, 70 and 80 °C). It has been observed that there was minor structural modification in 3D-structure of xylanase at 323, 333, and 343 K. But the helix and sheets moved out of the initial structure when simulation carried out at during 353 K (80 °C).

5.
Indian J Microbiol ; 55(3): 333-40, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26063944

RESUMO

The diseases caused by dermatophytes are common among several other infections which cause serious threat to human health. It is evident that enzyme squalene epoxidase is responsible for prolonged dermatophyte infection and it is appealing to note that this enzyme is also responsible for fatty acid synthesis in these groups of fungi. In the present study, terbinafine drug which targets enzyme squalene epoxidase has been explored to design its various novel analogues. The present study suggests that many more prominent drug analogues could be constituted which may be crucial towards designing new drug candidates. In the present study, we have designed a series of such analogues viz. [(2E)-6,6-dimethylhept-2-en-4-yn-1-yl](methyl)(naphthalen-1-ylmethyl)amine, N-[8-({[(2E)-6,6-dimethylhept-2-en-4-yn-1-yl](methyl)amino}methyl)naphthalen-1-yl]-2-(sulfoamino) acetamide, {[4-(dihydroxyamino)-8-({[(2E)-6,6-dimethylhept-2-en-4-yn-1-yl](methyl)amino}methyl)naphthalen-1-yl]sulfanyl}methanol and (R)-{[4-({[(2E,6R)-6,7-dimethyloct-2-en-4-yn-1-yl](methyl)amino}methyl)-5-[(hydroxysulfamoyl)amino]naphthalen-1-yl]amino}sulfinic acid. Moreover, further by molecular docking approach the binding between enzyme and designed analogues was further analysed. The present preliminary report suggested a considerably good docking interaction score of -338.75 kcal/mol between terbinafine and squalene epoxidase from Trichophyton rubrum. This preliminary study implies that few designed candidate ligands can be effectual towards the activity of this enzyme and can play crucial role in pathogenesis control of T. rubrum.

6.
Biofabrication ; 16(4)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38981495

RESUMO

One ever-evolving and ever-demanding critical human endeavour is the provision of food security for the growing world population. This can be done by adopting sustainable agriculture through horizontal (expanding the arable land area) and vertical (intensifying agriculture through sound technological approaches) interventions. Customized formulated nanomaterials have numerous advantages. With their specialized physico-chemical properties, some nanoparticulated materials improve the plant's natural development and stress tolerance and some others are good nanocarriers. Nanocarriers in agriculture often coat chemicals to form composites having utilities with crop productivity enhancement abilities, environmental management (such as ecotoxicity reduction ability) and biomedicines (such as the ability to control and target the release of useful nanoscale drugs). Ag, Fe, Zn, TiO2, ZnO, SiO2and MgO nanoparticles (NPs), often employed in advanced agriculture, are covered here. Some NPs used for various extended purposes in modern farming practices, including disease diagnostics and seed treatment are also covered. Thus, nanotechnology has revolutionized agrotechnology, which holds promise to transform agricultural (ecosystems as a whole to ensure food security in the future. Considering the available literature, this article further probes the emergent regulatory issues governing the synthesis and use of nanomaterials in the agriculture sector. If applied responsibly, nanomaterials could help improve soil health. This article provides an overview of the nanomaterials used in the distribution of biomolecules, to aid in devising a safer and eco-friendly sustainable agriculture strategy. Through this, agri-systems that depend on advanced farming practices might function more effectively and enhance agri-productivity to meet the food demand of the rising world population.


Assuntos
Agricultura , Nanoestruturas , Agricultura/métodos , Nanoestruturas/química , Humanos , Nanotecnologia/métodos
7.
Health Sci Rep ; 7(4): e2065, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38660006

RESUMO

Background and Aim: The traditional drug delivery approach involves systemic administration of a drug that could be nonspecific in targeting, low on efficacy, and with severe side-effects. To address such challenges, the field of smart drug delivery has emerged aiming at designing and developing delivery systems that can target specific cells, tissues, and organs and have minimal off-target side-effects. Methods: A literature search was done to collate papers and reports about the currently available various strategies for smart nano-inspired drug delivery. The databases searched were PubMed, Scopus, and Google Scholar. Based on selection criteria, the most pertinent and recent items were included. Results: Smart drug delivery is a cutting-edge revolutionary intervention in modern medicines to ensure effective and safe administration of therapeutics to target sites. These hold great promise for targeted and controlled delivery of therapeutic agents to improve the efficacy with reduced side-effects as compared to the conventional drug delivery approaches. Current smart drug delivery approaches include nanoparticles, liposomes, micelles, and hydrogels, each with its own advantages and limitations. The success of these delivery systems lies in engineering and designing them, and optimizing their pharmacokinetics and pharmacodynamics properties. Conclusion: Development of drug delivery systems that can get beyond various physiological and clinical barriers, as observed in conventionally administered chemotherapeutics, has been possible through recent advancements. Using multifunctional targeting methodologies, smart drug delivery tries to localize therapy to the target location, reduces cytotoxicity, and improves the therapeutic index. Rapid advancements in research and development in smart drug delivery provide wider and more promising avenues to guarantee a better healthcare system, improve patient outcomes, and achieve higher levels of effective medical interventions like personalized medicine.

8.
J Biomol Struct Dyn ; : 1-4, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37342980

RESUMO

HER2 and HER3 receptors dimerize into potent pro-oncogenic complexes involved in various aggressive and recurrent tumors. The role of febrile temperatures on the formation of HER2:HER3 complexes is unknown. To this end, molecular dynamics simulations of HER2 and HER3 were performed in the 37 °C-40 °C range. HER2 and ligand-free HER32 display inactive conformers that cannot form complexes at 40 °C, while maintaining their extended conformations able to dimerize in the 37 °C-39 °C range. Thermal therapy at particular fever points may complement existing therapy options for HER2-relevant cancers.Communicated by Ramaswamy H. Sarma.

9.
Vaccines (Basel) ; 11(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36679955

RESUMO

BACKGROUND: The global pharma sector is fast shifting from generics to biologics and biosimilars with the first approval in Europe in 2006 followed by US approval in 2015. In the form of Hepatitis B vaccine, India saw its first recombinant biologics approval in 2000. Around 20% of generic medications and 62% of vaccines are now supplied by the Indian pharmaceutical industry. It is this good position in biologics and biosimilars production that could potentially improve healthcare via decreased treatment cost. India has witnessed large investments in biosimilars over the years. Numerous India-bred new players, e.g., Enzene Biosciences Ltd., are keen on biosimilars and have joined the race alongside the emerging giants, e.g., Biocon and Dr. Reddy's. A very positive sign was the remarkable disposition during the COVID-19 pandemic by Bharat Biotech and the Serum Institute of India. India's biopharmaceutical industry has been instrumental in producing and supplying preventives and therapeutics to fight COVID-19. Despite a weak supply chain and workforce pressure, the production was augmented to provide reasonably priced high-quality medications to more than 133 nations. Biosimilars could cost-effectively treat chronic diseases involving expensive conventional therapies, including diabetes, respiratory ailments, cancer, and connective tissue diseases. Biologics and biosimilars have been and are being tested to treat and manage COVID-19 symptoms characterized by inflammation and respiratory distress. PURPOSE OF REVIEW: Although India boasts many universities, research centers, and a relatively skilled workforce, its global University-Industry collaboration ranking is 24, IPR ranking remains 47 and innovation ranking 39. This reveals a wide industry-academia gap to bridge. There are gaps in effective translational research in India that must be promptly and appropriately addressed. Innovation demands strong and effective collaborations among universities, techno-incubators, and industries. METHODOLOGY: Many successful research findings in academia do not get translation opportunities supposedly due to low industrial collaboration, low IP knowledge, and publication pressure with stringent timelines. In light of this, a detailed review of literature, including policy papers, government initiatives, and corporate reviews, was carried out, and the compilation and synthesis of the secondary data were meticulously summarized for the easy comprehension of the facts and roadmap ahead. For easy comprehension, charts, figures, and compiled tables are presented. RESULTS: This review assesses India's situation in the biosimilar space, the gaps and areas to improve for Indian investment strategies, development, and innovation, addressing need for a more skilled workforce, industrial collaboration, and business models. CONCLUSIONS: This review also proposes forward an approach to empowering technopreneurs to develop MSMEs for large-scale operations to support India in taking innovative thoughts to the global level to ultimately realize a self-reliant India. The limitations of the compilation are also highlighted towards the end.

10.
Indian J Microbiol ; 52(3): 373-80, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23997327

RESUMO

Inulin is emerging as an extremely rare source of sugar, it is having more sweetening capacity than table sugar, has beneficial effect in diabetic patient. Inulinases mainly produced by the microorganism and it degrades inulin into fructose which is a digestible form. There are more than 58 strains of microorganisms which are involved in the production of inulinases. The present report investigates about the selectivity of inulin by inulinase and its action to produce fructose through molecular docking. We have investigated exo-inulinase and endo-inulinases from Penicillium sp. TN-88(BAC16218) and Penicillium sp. TN-88(BAA19132), respectively with different arrangement of amino acids in the active site which detect the substrate. The protein sequences described above were processed to homology modeling by Swiss model and further they were docked with 1-ketose and fructose-6-phosphate as substrate by DOCK6 software package (dock.compbio.ucsf.edu). The results of the present studies represented that fructose-6-phosphate ((2R,3R,4S) fructose-6-phosphate) was having better interaction with exo-inulinase showing grid score of -40.288094 and the conserved amino acid Asp-22, Asp 128, Asp 179 and Ser 84 of exo-inulinase are involved in the bonding. In addition to this it was also seen that 1-ketose ((3S,4R)-ketose 1-phosphate) did not shown any interaction with the conserved part of the endo-inulinase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA