Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Environ Manage ; 338: 117740, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37027954

RESUMO

The soil carbon (C) dynamics is strongly influenced by climate and land-use patterns in the Himalayas. Therefore, soils under five prominent land use [e.g., maize (Zea mays), horticulture, natural forest, grassland, and wasteland] were sampled down up to 30 cm depth under two climatic conditions viz., temperate and subtropical to assess the impacts of climate and landuse on soil C dynamics. Results demonstrated that irrespective of land use, temperate soil contains 30.66% higher C than subtropical soils. Temperate soils under natural forests had the higher total organic carbon (TOC, 21.90 g kg-1), Walkley-Black carbon (WBC, 16.42 g kg-1), contents, and stocks (TOC, 66.92 Mg ha-1 and WBC, 50.24 Mg ha-1), and total soil organic matter (TSOM, 3.78%) concentration as compared to other land uses like maize, horticulture, grassland, and wasteland. Under both climatic conditions, maize land use had the lowest TOC 9.63, 6.55 g kg-1 and WBC 7.22, 4.91 g kg-1 at 0-15 and 15-30 cm soil depth, respectively. Horticulture land use had 62.58 and 62.61% higher TOC and WBC over maize-based land use under subtropical and temperate climatic conditions at 0-30 cm soil depth, respectively. However, soils of maize land use under temperate conditions had ∼2 times more TOC than in subtropical conditions. The study inferred that the C-losses is more in the subtropical soil than in temperate soils. Hence, the subtropical region needs more rigorous adoption of C conservation farming practices than the temperate climatic setting. Although, the adoption of C storing and conserving practices is crucial under both climatic settings to arrest land degradation. Horticultural land uses along with conservation effective soil management practices may be encouraged to restore more soil C and to improve the livelihood security of the hill populace in the North Western Himalayas.


Assuntos
Carbono , Solo , Conservação dos Recursos Naturais , Agricultura/métodos , Florestas , Zea mays
2.
J Environ Manage ; 303: 114146, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838378

RESUMO

The presence of atrazine a persistent herbicide in soil poses a serious threat to the ecosystem. The biochar amendment in soil altered the fate of this herbicide by modifying the soil properties. The present study examines the dissipation and toxicity of atrazine in three contrasting soils (silty clay, sandy loam, and sandy clay) without and with biochar amendment (4%). The experiment was performed for 150 days with three application rates of atrazine (4, 8, and 10 mg kg-1). The speciation and degradation of atrazine, metabolite content, microbial biomass, and enzymatic activities were evaluated in all treatments. Three kinetic models and soil enzyme index were calculated to scrutinize the degradation of atrazine and its toxicity on soil biota, respectively. The goodness of fit statistical indices suggested that the first-order double exponential decay (FODE) model best described the degradation of atrazine in silty clay soil. However, a single first order with plateau (SFOP) was best fitted for atrazine degradation in sandy loam and sandy clay soils. The half-life of atrazine was higher in sandy clay soil (27-106 day-1) than silty clay (28-77 day-1) and sandy loam soil (27-83 day-1). The variations in the dissipation kinetics and half-life of the atrazine in three soil were associated with atrazine partitioning, availability of mineral content (silica, aluminum, and iron), and soil microbial biomass carbon. Biochar amendment significantly reduced the plateau in the kinetic curve and also reduced the atrazine toxicity on soil microbiota. Overall, biochar was more effective in sandy clay soil for the restoration of soil microbial activities under atrazine stress due to modulation in the pH and more improved soil quality.


Assuntos
Atrazina , Microbiota , Poluentes do Solo , Atrazina/toxicidade , Carvão Vegetal , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
3.
J Environ Manage ; 318: 115603, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35759964

RESUMO

Soil carbon (C) loss is the prime sign of land degradation, and C pools have a great impact on soil quality and climate change mitigation. Hence, a field experiment was conducted for three consecutive years to assess the impact of crop intensification and conservation tillage practices on changes in the C pool at different soil depths of marginal land of the Indian Himalayas. The experiment consisted of two intensified cropping systems viz., CS1-Summer maize (Zea mays L.) -rainy season maize-lentil (Lens esculenta L.) and CS2-Summer maize-rainy season maize-mustard (Brassica juncea (L.) Czern) and five tillage practices viz., No-till (NT); NT + live mulch of cowpea (NT + LMC); reduced tillage (RT); RT + LMC and conventional tillage (CT). Results revealed that CS2 produced significantly higher biomass, C retention efficiency (9.85%), and sequestrated greater C (0.42 Mg ha-1 yr-1) in the soil system than CS1. Of the various tillage practices, RT + LMC registered higher biomass and recycled greater biomass and C than those under other tillage practices. However, the highest soil organic carbon (SOC) content (7.03 g kg-1) and pool (9.62 Mg ha-1) in 0-10 cm depth were observed under NT + LMC. The non-labile C pool size under NT in 0-10 cm and 10-20 cm depths was significantly greater than those under CT. The NT + LMC sequestrated significantly higher SOC (0.57 Mg ha-1 yr-1) than other tillage practices. Thus, the study indicated that the adoption of an intensified maize-based system under RT + LMC or NT + LMC would increase SOC storage and C sequestration in marginal lands of the Indian Himalayas.


Assuntos
Carbono , Solo , Agricultura/métodos , Biomassa , Carbono/metabolismo , Zea mays/metabolismo
4.
Indian J Clin Biochem ; 37(1): 93-99, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35125698

RESUMO

Malnutrition is a significant comorbidity in nearly one-third of the 8 million deaths in children under five years of age worldwide. Children with severe acute malnutrition have severely disturbed physiology and metabolism. Considering the vital importance of amino acids and the likely changes with the therapeutic diet, we aimed at evaluating these changes in children with SAM at baseline and after rehabilitation with a therapeutic diet at 14 days. Severe acute malnutrition defined as per WHO, for children between 6 months and 5 years with weight for height/length < -3SD of WHO charts, bilateral pitting edema, and mid-upper arm circumference (MUAC) < 1.5 cm. A total of 38 children were enrolled as cases, whereas the control group comprised of 37 children. Anthropometric measurement and estimation of amino acids in the blood were done at the baseline and after dietary rehabilitation. The individual levels of the essential and non-essential amino acids were significantly lower in the cases as compared to the controls, except for Aspartate and Threonine. The levels of amino acids increased significantly after dietary rehabilitation except for arginine, however not to the levels of those in controls. Most of the metabolites were reflective of maladaptation in SAM. Though nutritional rehabilitation of children with SAM improved the levels of amino acids, these levels were still low when compared to the controls, stipulating that complete metabolic recovery may take a longer duration of time. This necessitates the continuation of nutritional rehabilitation for a longer time and regular follow up of these children to ensure better compliance.

5.
Physiol Plant ; 2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33713449

RESUMO

Contaminations of heavy metals such as lead (Pb) and cadmium (Cd) in medicinal plants (MPs) not only restrict their safe consumption due to health hazards but also lower their productivity. Biochar amendments in the soil are supposed to immobilize the toxic metals, improve the soil quality and agricultural productivity. However, the impact of biochar on growth attributes, metal accumulation, pharmacologically active compounds of MPs, and health risk is less explored. An experiment was performed on three medicinal plants (Bacopa monnieri (L.), Andrographis paniculata (Burmf.) Nees, and Withaniasomnifera (L.)) grown in a greenhouse in soil co-contaminated with Pb and Cd (at two concentrations) without and with biochar amendments (2 and 4% application rates). The fractionation of Pb and Cd, plant growth parameters, stress enzymes, photosynthetic capacity, pharmacologically active compounds, nutrient content, uptake and translocation of metals, antioxidant activities, and metabolite content were examined in the three MPs. The accumulation of Pb and Cd varied from 3.25-228 mg kg1 and 1.29-20.2 mg kg-1 , respectively, in the three MPs, while it was reduced to 0.08-18 mg kg-1 and 0.03-6.05 mg kg-1 upon biochar treatments. Plants grown in Pb and Cd co-contaminated soil had reduced plant biomass (5-50% depending on the species) compared to control and a deleterious effect on photosynthetic attributes and protein content. However, biochar amendments significantly improved plant biomass (21-175%), as well as photosynthesis attributes, chlorophyll, and protein contents. Biochar amendments in Pb and Cd co-contaminated soil significantly reduced the health hazard quotient (HQ) estimated for the consumption of these medicinal herbs grown on metal-rich soil. An enhancement in secondary metabolite content and antioxidant properties was also observed upon biochar treatments. These multiple beneficial effects of biochar supplementation in Pb and Cd co-contaminated soil suggested that a biochar amendment is a sustainable approach for the safe cultivation of MPs. This article is protected by copyright. All rights reserved.

6.
J Environ Manage ; 283: 111978, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33477098

RESUMO

Globally, various estimates are available on the above-ground (plant parts) carbon (C) sequestering potential of agroforestry systems (AFSs). However, information on soil organic carbon (SOC) sequestration potential is limited for AFSs. Furthermore, the impacts of AFSs established for the restoration of C in degraded soils (prone to soil erosion, C and nutrients loss, etc.) of Himalayas are rarely investigated. Thus, a study was conducted on an agroforestry block established in 1989 at the Indian Council of Agricultural Research (ICAR), Research Complex for North Eastern Hill (NEH) Region, Lembucherra, Tripura, India. The AFSs comprised of four multipurpose tree species viz., teak (Tectona grandis Linn), sissoo (Dalbergia sissoo Roxb. Ex DC.), eucalyptus (Eucalyptus globulus L.), and neem (Azadirachta indica A. Juss) in combination with pineapple (Ananas comosus L. merr.). Planted in three times replicated randomized block design. After 28 years of establishment, the impacts of these AFSs were assessed on SOC stocks and its fraction pools. Results revealed that sissoo + pineapple system stored the highest SOC stocks in 0-15 cm (22.1 ± 1.4 Mg/ha) and 30-60 cm (18.0 ± 4.3 Mg/ha) depths, whereas the SOC stocks in 15-30 cm (12.2 ± 1.2 Mg/ha) and 0-30 cm (34.0 ± 1.6 Mg/ha) were the highest under teak + pineapple. When considering the entire 0-100 cm soil profile, the SOC stocks ranged between 65.3 and 71.6 Mg/ha across the diverse AFSs which was significantly higher than that under cultivated land (52.8 ± 2.6 Mg/ha). The sissoo + pineapple system had the highest SOC stock in 0-100 cm (71.6 ± 5.8 Mg/ha). The share of passive carbon (PC, less labile + non-labile) pools to SOC stocks under AFSs followed the order of sissoo + pineapple > teak + pineapple > neem + pineapple > eucalyptus + pineapple. The PC or recalcitrant pools of SOC stocks at 0-100 cm were 54.2-60.6% under various AFSs. Results revealed that the establishment of AFSs with pineapple on degraded lands increased a significant amount of C and had a considerable effect on soil quality in comparison to C present in soils under cropland. Thus, a large scale adoption of AFSs may restore C lost through the cultivation of the crop in degraded lands and provide a feasible option for livelihood through concurrent cultivation of multipurpose tree species and agri-horticulture crops.


Assuntos
Carbono , Solo , Agricultura , Carbono/análise , Sequestro de Carbono , Índia
7.
J Struct Biol ; 194(3): 368-74, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26993465

RESUMO

The termination module of nonribosomal peptide synthetases (NRPS) and polyketide synthases (PKS) offloads the final product as an acid (occasionally also accompanied by cyclization) upon hydrolysis by employing thioesterase domains (TE-domains). Reductase domains (R-domains) of short-chain dehydrogenase/reductase (SDR) family offer an alternative offloading mechanism by reducing 4'-phosphopantetheine (4'-PPant) arm-tethered peptidyl chain, a thioester, to an aldehyde or an alcohol. Recent studies have highlighted their functional importance, for instance in the glycopeptidolipid (GPL) biosynthesis of Mycobacterium smegmatis, where the resulting alcoholic group is the site for subsequent modifications such as glycosylations. The mechanistic understanding of how these R-domains function in the context of multi-modular NRPS and PKS is poorly understood. In this study, conformational differences in functionally important loops, not reported previously, were identified in a new crystal form of R-domain which may be relevant to functioning in the context of assembly-line NRPS and PKS enzymology. Here, we propose a concerted loop movement model that allows gating of cofactor binding to these enzymes, enabling the release of the final product only after the substrate has reached the active site during biosynthesis, and therefore distinct from a canonical single domain SDR family of enzymes.


Assuntos
Biocatálise , Mycobacterium tuberculosis/enzimologia , NADP/metabolismo , Peptídeo Sintases/metabolismo , Sítios de Ligação , Domínio Catalítico , Modelos Moleculares , Oxirredutases/metabolismo , Policetídeo Sintases/metabolismo , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína
8.
J Pineal Res ; 58(3): 262-74, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25626558

RESUMO

L-3,4-dihydroxyphenylalanine (L-DOPA) reduces symptoms of Parkinson's disease (PD), but suffers from serious side effects on long-term use. Melatonin (10-30 mg/kg, 6 doses at 10 hr intervals) was investigated to potentiate L-DOPA therapeutic effects in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in mice. Striatal tyrosine hydroxylase (TH) immunoreactivity, TH, and phosphorylated ser 40 TH (p-TH) protein levels were assayed on 7th day. Nigral TH-positive neurons stereology was conducted on serial sections 2.8 mm from bregma rostrally to 3.74 mm caudally. MPTP caused 39% and 58% decrease, respectively, in striatal fibers and TH protein levels, but 2.5-fold increase in p-TH levels. About 35% TH neurons were lost between 360 and 600 µm from 940 µm of the entire nigra analyzed, but no neurons were lost between 250 µm rostrally and 220 µm caudally. When L-DOPA in small doses (5-8 mg/kg) failed to affect MPTP-induced akinesia or catalepsy, co-administration of melatonin with L-DOPA attenuated these behaviors. Melatonin administration significantly attenuated MPTP-induced loss in striatal TH fibers (82%), TH (62%) and p-TH protein (100%) levels, and nigral neurons (87-100%). Melatonin failed to attenuate MPTP-induced striatal dopamine depletion. L-DOPA administration (5 mg/kg, once 40 min prior to sacrifice, p.o.) in MPTP- and melatonin-treated mice caused significant increase in striatal dopamine (31%), as compared to L-DOPA and MPTP-treated mice. This was equivalent to 8 mg/kg L-DOPA administration in parkinsonian mouse. Therefore, prolonged, effective use of L-DOPA in PD with lesser side effects could be achieved by treating with 60% lower doses of L-DOPA along with melatonin.


Assuntos
Antiparkinsonianos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Levodopa/farmacologia , Melatonina/farmacologia , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Antiparkinsonianos/administração & dosagem , Neurônios Dopaminérgicos/metabolismo , Sinergismo Farmacológico , Levodopa/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transtornos Parkinsonianos/induzido quimicamente , Substância Negra/efeitos dos fármacos
9.
J Pineal Res ; 55(3): 304-12, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23952687

RESUMO

The dopamine precursor, L-3,4-dihydroxyphenylalanine (L-DOPA), is the preferred drug for Parkinson's disease, but long-term treatment results in the drug-induced dyskinesias and other side effects. This study was undertaken to examine whether melatonin could potentiate low dose L-DOPA effects in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental parkinsonism. Mice were treated with the parkinsonian neurotoxin, MPTP, and different doses of melatonin and low doses of L-DOPA. Behavior, striatal histology, and dopamine metabolism were evaluated on the 7th day. MPTP-induced striatal dopamine loss was not modified by melatonin administration (10-30 mg/kg; i.p. at 10-hr intervals, 6 times; or at 2-hr intervals, by day). However, low doses of L-DOPA (5 mg/kg, by oral gavage) administered alone or along with melatonin (10 mg/kg, i.p.) twice everyday for 2 days, 10 hr apart, after two doses of MPTP significantly attenuated striatal dopamine loss and provided improvements in both catalepsy and akinesia. Additionally, Golgi-impregnated striatal sections showed preservation of the medium spiny neurons, which have been damaged in MPTP-treated mouse. The results demonstrated that melatonin, but not L-DOPA, restored spine density and spine morphology of medium spiny neurons in the striatum and suggest that melatonin could be an ideal adjuvant to L-DOPA therapy in Parkinson's disease, and by the use of this neurohormone, it is possible to bring down the therapeutic doses of L-DOPA.


Assuntos
Antiparkinsonianos/farmacologia , Depressores do Sistema Nervoso Central/farmacologia , Corpo Estriado/metabolismo , Dendritos/metabolismo , Levodopa/farmacologia , Melatonina/farmacologia , Doença de Parkinson Secundária/tratamento farmacológico , Animais , Antiparkinsonianos/agonistas , Depressores do Sistema Nervoso Central/agonistas , Corpo Estriado/patologia , Dendritos/patologia , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Levodopa/agonistas , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Melatonina/agonistas , Camundongos , Camundongos Endogâmicos BALB C , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia
10.
Proc Natl Acad Sci U S A ; 107(30): 13485-90, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20628011

RESUMO

Understanding the network structure of white matter communication pathways is essential for unraveling the mysteries of the brain's function, organization, and evolution. To this end, we derive a unique network incorporating 410 anatomical tracing studies of the macaque brain from the Collation of Connectivity data on the Macaque brain (CoCoMac) neuroinformatic database. Our network consists of 383 hierarchically organized regions spanning cortex, thalamus, and basal ganglia; models the presence of 6,602 directed long-distance connections; is three times larger than any previously derived brain network; and contains subnetworks corresponding to classic corticocortical, corticosubcortical, and subcortico-subcortical fiber systems. We found that the empirical degree distribution of the network is consistent with the hypothesis of the maximum entropy exponential distribution and discovered two remarkable bridges between the brain's structure and function via network-theoretical analysis. First, prefrontal cortex contains a disproportionate share of topologically central regions. Second, there exists a tightly integrated core circuit, spanning parts of premotor cortex, prefrontal cortex, temporal lobe, parietal lobe, thalamus, basal ganglia, cingulate cortex, insula, and visual cortex, that includes much of the task-positive and task-negative networks and might play a special role in higher cognition and consciousness.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Animais , Encéfalo/anatomia & histologia , Mapeamento Encefálico , Bases de Dados Factuais , Macaca , Vias Neurais/anatomia & histologia
11.
Environ Sci Pollut Res Int ; 30(3): 7040-7055, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36029442

RESUMO

Chlorpyrifos (CP), a broad-spectrum organophosphorus insecticide, is known for deleterious effects on soil enzymatic activities. Hence, the present study aims to examine the resilience effect of biochar (BC) aided Pelargonium graveolens L. plantation on enzymatic activities of chlorpyrifos contaminated soil. The two chlorpyrifos contaminated agriculture soils (with concentrations: S1: 46.1 and S2: 95.5 mg kg-1) were taken for the pot experiment. The plant biomass, plant growth parameters, soil microbial biomass, and enzymatic activities such as alkaline phosphatase, N-acetyl glucosaminidase, aryl sulphatase, cellulase, ß-glucosidase, dehydrogenase, phenoloxidase, and peroxidase enzymes were  examined. Ecoenzyme activities and their stoichiometry were used to enumerate the different indices including geometric mean, weighted mean, biochemical activity indices, integrated biological response, treated-soil quality index, and vector analysis in all treatments. The results of the study demonstrated that the biochar incorporation enhanced the tolerance of P. graveolens (from 42-45% to 55-67%) in chlorpyrifos contaminated soil and reduced the CP accumulation in plants. A reduction in the inhibitory effect of chlorpyrifos on soil enzymatic activities and plant growth by BC incorporation was observed along with an increase in the activities of ecoenzymes (16.7-18.6%) in soil. The investigation indicated more microbial investments in C and P than that in N acquisition under CP stress. The BC amendment catalyzed the activities of lignin and cellulose-degrading enzymes and enhanced nutrition acquisition. The CP contamination and BC amendment have no significant effect on the oil quality of P. graveolens. The study demonstrated that BC-aided P. graveolens plantation offers sustainable phytotechnology for CP contaminated soil with an economic return.


Assuntos
Clorpirifos , Inseticidas , Pelargonium , Poluentes do Solo , Inseticidas/análise , Solo , Compostos Organofosforados , Carvão Vegetal , Hidrolases , Poluentes do Solo/análise
12.
Environ Sci Pollut Res Int ; 30(51): 110133-110160, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37779123

RESUMO

Prevailing dry conditions and rainfall deficit during the spring season in North India led to heat wave conditions which resulted in widespread and intense forest fire events in the Himalayan state of Uttarakhand during April 16-30, 2022. A total of 7589 active fires were detected by VIIRS during the second half of April 2022 compared to 1558 during the first half. The TROPOMI observed total column values of CO and NO2 increased by 4.4% and 11.7%, respectively during April 16-30, 2022 with respect to April 1-15, 2022. A noticeable increase in surface level concentration of trace gases was also observed at Dehradun. In situ measurements of CO, NOx, and O3 during April 16-30, 2022 show an increase of 133, 35, and 6% compared to previous year observations during the same period. Weather Research and Forecasting model with chemistry (WRF-Chem) is utilized to quantitatively estimate the contribution of this event on the distribution of air pollutants over this state. The model results were evaluated against ERA5 reanalysis, upper air soundings, and TROPOMI-retrieved total column density (TCD) of CO, NO2, and O3. Two simulations with (Fire) and without (NoFire) biomass burning emissions input were performed to quantify the contribution of forest fires to the concentration of trace gases and particulates. The CO, NO2, and O3 emitted/produced from forest fire over Uttarakhand during April 2022 contributed approximately 39.95, 35.73, and 9.97% to the surface concentration of respective gas. In the case of aerosols, it was around 71.20, 71.44, and 33.62% for PM2.5, PM10, and BC respectively. The vertical profile analysis of pollutants revealed that extreme forest fire events can perturb the distribution of air pollutants from the surface up to 450 hPa.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Incêndios Florestais , Poluentes Atmosféricos/análise , Temperatura Alta , Dióxido de Nitrogênio/análise , Monitoramento Ambiental/métodos , Ozônio/análise , Poluição do Ar/análise , Material Particulado/análise
13.
Isotopes Environ Health Stud ; 59(3): 248-268, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37210706

RESUMO

Rainforests play an important role in hydrological and carbon cycles, both at regional and global scales. They pump large quantities of moisture from the soil to the atmosphere and are major rainfall hotspots of the world. Satellite-observed stable water isotope ratios have played an essential role in determining sources of moisture in the atmosphere. Satellites provide information about the processes involving vapour transport in different zones of the world, identifying sources of rainfall and distinguishing moisture transport in monsoonal systems. This paper focuses on major rainforests of the world (Southern Amazon, Congo and Northeast India) to understand the role of continental evapotranspiration in influencing tropospheric water vapour. We have used satellite measurements of 1H2H16O/1H216O from Atmospheric InfraRed Sounder (AIRS), evapotranspiration (ET), solar-induced fluorescence (SIF), precipitation (P), atmospheric reanalysis-derived moisture flux convergence (MFC) and wind to discern the role of ET in influencing water vapour isotopes. A global map of the correlation between δ2Hv and ET-P flux indicates that densely vegetated regions in the tropics show the highest positive correlation (r > 0.5). Using mixing models and observations of specific humidity and isotopic ratio over these forested regions, we discern the source of moisture in pre-wet and wet seasons.


Assuntos
Atmosfera , Vapor , Isótopos de Oxigênio/análise , Estações do Ano , Gases
14.
Sci Adv ; 8(11): eabj4716, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302860

RESUMO

Dysregulation of mitochondrial Ca2+ homeostasis has been linked to neurodegenerative diseases. Mitochondrial Ca2+ uptake is mediated via the calcium uniporter complex that is primarily regulated by MICU1, a Ca2+-sensing gatekeeper. Recently, human patients with MICU1 loss-of-function mutations were diagnosed with neuromuscular and cognitive impairments. While studies in patient-derived cells revealed altered mitochondrial calcium signaling, the neuronal pathogenesis was difficult to study. To fill this void, we created a neuron-specific MICU1-KO mouse model. These animals show progressive, abnormal motor and cognitive phenotypes likely caused by the degeneration of motor neurons in the spinal cord and the cortex. We found increased susceptibility to mitochondrial Ca2+ overload-induced excitotoxic insults and cell death in MICU1-KO neurons and MICU1-deficient patient-derived cells, which can be blunted by inhibiting the mitochondrial permeability transition pore. Thus, our study identifies altered neuronal mitochondrial Ca2+ homeostasis as causative in the clinical symptoms of MICU1-deficient patients and highlights potential therapeutic targets.


Assuntos
Proteínas de Transporte de Cátions , Proteínas de Transporte da Membrana Mitocondrial , Doenças Neurodegenerativas , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Humanos , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia
15.
Saudi J Biol Sci ; 29(10): 103427, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36091723

RESUMO

Environmental crises, land degradation, and frequent crop failure threaten the livelihoods of millions of the populace in the semi-arid agroecosystems. Therefore, different combinations of annual crops with perennial fruit trees were assessed to restore the soil carbon, and enhance farm productivity and profitability in a semi-arid climate. The study hypothesized that the integration of perennial fruit trees with seasonal crops may enhance farm productivity, economic returns, and environmental sustainability. Integration of phalsa (Grewia asiatica) with mung bean (Vigna radiata) - potato (Solanum tuberosum) system recorded the highest system productivity (25.9 Mg/ha) followed by phalsa with cowpea (Vigna unguiculata) -mustard (Brassica juncea) systems (21.2 Mg/ha). However, Karonda (Carissa sp.) with mung bean - potato system recorded maximum net return (3529.1 US$/ha), and water use efficiency (33.0 kg/ha-mm). Concerning the benefit-cost (B:C) ratio, among the agroforestry systems, the karonda + cowpea - mustard system registered a maximum BC ratio (3.85). However, SOC density remained higher (9.10 Mg/ha) under the phalsa + cowpea - mustard and Moringa + mung bean - potato system (9.16 Mg/ha) over other systems. Similarly, phalsa + mung bean - potato system had the highest C sustainability index (27.6), carbon sequestration potential (0.6-0.67 Mg/ha/year), and water use efficiency (33.0 kg/ha-mm). Hence, the study suggested that the integration of short-duration leguminous and oilseeds with fruit trees offer a myriad of benefits and an efficient system for restoring the soil C without compromising the food and livelihood security of the rural populace in semiarid regions.

16.
Bioresour Technol ; 360: 127566, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35788385

RESUMO

Globally agricultural production system generates a huge amount of solid waste. Improper agri-waste management causes environmental pollution which resulted in economic losses and human health-related problems. Hence, there is an urgent need to design and develop eco-friendly, cost-effective, and socially acceptable agri-waste management technologies. Agri-waste has high energy conversion efficiency as compared to fossil fuel-based energy generation materials. Agri-waste can potentially be exploited for the production of second-generation biofuels. However, composted agri-waste can be an alternative to energy-intensive chemical fertilizers in organic production systems. Furthermore, value-added agri-waste can be a potential feedstock for livestock and industrial products. But comprehensive information concerning agri-waste management is lacking in the literature. Therefore, the present study reviewed the latest advancements in efficient agri-waste management technologies. This latest review will help the researchers and policy planners to formulate environmentally robust residue management practices for achieving a green economy in the agricultural production sector.


Assuntos
Agricultura , Gerenciamento de Resíduos , Biocombustíveis , Biomassa , Poluição Ambiental , Humanos , Gerenciamento de Resíduos/métodos
17.
Chemosphere ; 292: 133451, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34973251

RESUMO

Indiscriminate use of chemical fertilizers in the agricultural production systems to keep pace with the food and nutritional demand of the galloping population had an adverse impact on ecosystem services and environmental quality. Hence, an alternative mechanism is to be developed to enhance farm production and environmental sustainability. A nanohybrid construct like nanofertilizers (NFs) is an excellent alternative to overcome the negative impact of traditional chemical fertilizers. The NFs provide smart nutrient delivery to the plants and proves their efficacy in terms of crop productivity and environmental sustainability over bulky chemical fertilizers. Plants can absorb NFs by foliage or roots depending upon the application methods and properties of the particles. NFs enhance the biotic and abiotic stresses tolerance in plants. It reduces the production cost and mitigates the environmental footprint. Multitude benefits of the NFs open new vistas towards sustainable agriculture and climate change mitigation. Although supra-optimal doses of NFs have a detrimental effect on crop growth, soil health, and environmental outcomes. The extensive release of NFs into the environment and food chain may pose a risk to human health, hence, need careful assessment. Thus, a thorough review on the role of different NFs and their impact on crop growth, productivity, soil, and environmental quality is required, which would be helpful for the research of sustainable agriculture.


Assuntos
Agricultura , Ecossistema , Produção Agrícola , Fertilizantes/análise , Humanos , Solo
18.
Environ Pollut ; 287: 117635, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34182386

RESUMO

The presence of atrazine, a triazine herbicide, and its residues in agriculture soil poses a serious threat to human health and environment through accumulation in edible plant parts. Hence, the present study focused on atrazine induced stress amelioration of Andrographis paniculata, an important medicinal plant, by a plant growth promoting and atrazine degrading endophytic bacterium CIMAP-A7 inoculation. Atrazine has a non-significant effect at a lower dose while at a higher dose (lower: 25 and higher: 50 mg kg-1) 22 and 36% decrease in secondary metabolite content and plant dry weight of A. paniculata was recorded, respectively. Endophyte CIMAP-A7 inoculation significantly reduced atrazine soil content, by 78 and 51% at lower and a higher doses respectively, than their respective control treatments. Inoculation of CIMAP-A7 exhibited better plant growth in terms of increased total chlorophyll, carotenoid, protein, and metabolite content with reduced atrazine content under both atrazine contaminated and un-contaminated treatments. Atrazine induced oxidative stress in A. paniculata was also ameliorated by CIMAP-A7 by reducing stress enzymes, proline, and malondialdehyde accumulation under contaminated soil conditions than un-inoculated treatments. Furthermore, the presence of atrazine metabolites deisopropylatrazine (DIA) and desethylatrazine (DEA) strongly suggests a role of CIMAP-A7 in mineralization however, the absence of these metabolites in uninoculated soil and all plant samples were recorded. These findings advocate that the amelioration of atrazine induced stress with no/least pesticide content in plant tissues by plant-endophyte co-interactions would be efficient in the remediation of atrazine contaminated soils and ensure safe crop produce.


Assuntos
Andrographis , Atrazina , Herbicidas , Poluentes do Solo , Atrazina/análise , Atrazina/toxicidade , Biodegradação Ambiental , Herbicidas/toxicidade , Humanos , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
19.
J Hazard Mater ; 406: 124302, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33162235

RESUMO

The present study explores the differential responses of two genotypes (APwC: wild collection and APMS: mass selection line) of A. paniculata against the three application rates of arsenic (42, 126, and 200 mg kg-1). The oxidative enzymes, As accumulation in different tissues, plant growth, and content of pharmacologically important ent-labdane-related diterpenes (ent-LRDs) of the two genotypes were evaluated in the study. Results demonstrated that As uptake significantly reduced plant biomass in APwC and APMS by 5-41.5% and 9-33% in a dose-response manner, respectively. The APMS exhibited lower bioconcentration and translocation factors, higher As tolerance index, and higher content of ent-LRDs as compared to APWC. As treatment induced a decrease in the sum of four metabolite content of APMS (1.43 times) and an increase in that of APWC (1.12 times) as compared to control. Likewise, variance in the production of 5,7,2',3'-tetramethoxyflavanone, and stress enzymes was also observed between APwC and APMS. The increase in the expression of ApCPS2 suggested its involvement in channeling of metabolic flux towards the biosynthesis of ent-LRDs under As stress.


Assuntos
Andrographis , Arsênio , Diterpenos , Arsênio/toxicidade , Genótipo , Estresse Oxidativo/genética , Extratos Vegetais
20.
Sci Total Environ ; 722: 137874, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32199380

RESUMO

Achieving a circular economic model in agriculture and meeting the food requirement of the growing population is a global challenge. The task is much more daunting in the Eastern Himalaya where low productive maize-fallow is a predominant production system. To enhance system productivity and energy use efficiency while maintaining environmental sustainability and economic profitability, therefore, energy-efficient, low carbon footprint (CF; CO2-e) and profitable short duration crops must be made an integral part of the maize fallow system. Thus, six cropping systems viz., maize-fallow, maize-French bean, maize-soybean, maize-black gram, maize-green gram, and maize-toria were evaluated for seven consecutive years (2011-2018) to assess their energy requirement and efficiency, carbon footprint (CF; CO2-e), economic returns and eco-efficiency. The results revealed that the maize-French bean system had the highest system productivity (11.4 Mg ha-1), energy productivity (17.9), energy profitability (15.9) and non-renewable energy use efficiency (9.97). The maize-French bean system had also the highest net profit (US$ 3764.5 ha-1) and benefit to cost ratio (2.54). The energy consumed under different inputs/activities across the cropping systems for chemical fertilizers, diesel and machinery ranged from 50.0-62.7%, 17.3-20.8% and 4.6-15.4%, respectively. The maize-fallow system had the highest CF (0.34 kg CO2 e per kg grain) while, the maize-French bean system had the lowest CF (0.19 kg CO2 e per kg grain). The maize-French bean system had also considerably increased eco-efficiency both in terms of energy use (US$ 0.23 MJ-1) and (US$ 1.78 per kg CO2 e) over maize-fallow system. Thus, the study has suggested that maize-French bean system is energy-efficient, economically viable and environmentally safer systems to utilize maize fallow and improve food security, may help in achieving green/circular economy.


Assuntos
Zea mays , Agricultura , Produtos Agrícolas , Fertilizantes , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA