Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Immunol ; 211(6): 981-993, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37493438

RESUMO

Current vaccine efforts to combat SARS-CoV-2 are focused on the whole spike protein administered as mRNA, viral vector, or protein subunit. However, the SARS-CoV-2 receptor-binding domain (RBD) is the immunodominant portion of the spike protein, accounting for 90% of serum neutralizing activity. In this study, we constructed several versions of RBD and together with aluminum hydroxide or DDA (dimethyldioctadecylammonium bromide)/TDB (d-(+)-trehalose 6,6'-dibehenate) adjuvant evaluated immunogenicity in mice. We generated human angiotensin-converting enzyme 2 knock-in mice to evaluate vaccine efficacy in vivo following viral challenge. We found that 1) subdomain (SD)1 was essential for the RBD to elicit maximal immunogenicity; 2) RBDSD1 produced in mammalian HEK cells elicited better immunogenicity than did protein produced in insect or yeast cells; 3) RBDSD1 combined with the CD4 Th1 adjuvant DDA/TDB produced higher neutralizing Ab responses and stronger CD4 T cell responses than did aluminum hydroxide; 4) addition of monomeric human Fc receptor to RBDSD1 (RBDSD1Fc) significantly enhanced immunogenicity and neutralizing Ab titers; 5) the Beta version of RBDSD1Fc provided a broad range of cross-neutralization to multiple antigenic variants of concern, including Omicron; and 6) the Beta version of RBDSD1Fc with DDA/TDB provided complete protection against virus challenge in the knock-in mouse model. Thus, we have identified an optimized RBD-based subunit vaccine suitable for clinical trials.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Animais , Camundongos , SARS-CoV-2 , Vacinas contra COVID-19 , Hidróxido de Alumínio , Glicoproteína da Espícula de Coronavírus , Vacinas de Subunidades Antigênicas , Anticorpos Antivirais , Anticorpos Neutralizantes , Mamíferos
2.
Pharm Res ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138788

RESUMO

BACKGROUND: Irinotecan administration can lead to severe delayed-onset diarrhea (SDOD) in clinical practice. Currently, there is no reliable surrogate predictor of intestinal exposure to SN-38 and subsequent diarrhea incidence. METHODS: The relationship between fecal 7-ethyl-10-hydroxycamptothecin (SN-38) content and SDOD was investigated in Fisher 344 rats using a novel spectrofluorimetric method. Additionally, a pharmacokinetic study of irinotecan was performed to evaluate the biodistribution of SN-38 to establish the relationship between tissue and fecal SN-38 exposure. RESULTS: The spectrofluorimetric method was successfully employed to measure fecal SN-38 and CPT-11 content from Day 3 to Day 6 post-irinotecan administration. Only fecal SN-38 content on Day 3 exhibited a significantly positive correlation with SDOD incidence on Days 4 and 5. A cutoff value of SN-38 ≥ 0.066 mg/g in feces was identified, predicting severe diarrhea incidence with 81% accuracy and 80% specificity. The positive correlation between fecal SN-38 content and SN-38 exposure in the ileum on Day 3 was also reflected in the changes of indicators during intestinal injury, such as prostaglandin E2 level and antioxidant activity. CONCLUSION: Fecal SN-38 content proves to be representative of intestinal exposure to SN-38, indicative of intestinal injury, and predictive of SDOD incidence in rats, while the spectrofluorimetric method demonstrates the translational potential.

3.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473971

RESUMO

UDP-glycosyltransferases (UGTs) form a large enzyme family that is found in a wide range of organisms. These enzymes are known for accepting a wide variety of substrates, and they derivatize xenobiotics and metabolites for detoxification. However, most UGT homologs have not been well characterized, and their potential for biomedical and environmental applications is underexplored. In this work, we have used a fluorescent assay for screening substrates of a plant UGT homolog by monitoring the formation of UDP. We optimized the assay such that it could be used for high-throughput screening of substrates of the Medicago truncatula UGT enzyme, UGT71G1, and our results show that 34 of the 159 screened compound samples are potential substrates. With an LC-MS/MS method, we confirmed that three of these candidates indeed were glycosylated by UGT71G1, which includes bisphenol A (BPA) and 7-Ethyl-10-hydroxycamptothecin (SN-38); derivatization of these toxic compounds can lead to new environmental and medical applications. This work suggests that UGT homologs may recognize a substrate profile that is much broader than previously anticipated. Additionally, it demonstrates that this screening method provides a new means to study UDP-glycosyltransferases, facilitating the use of these enzymes to tackle a wide range of problems.


Assuntos
Glicosiltransferases , Espectrometria de Massas em Tandem , Glicosiltransferases/metabolismo , Cromatografia Líquida , Plantas/metabolismo , Difosfato de Uridina
4.
Toxicol Mech Methods ; 34(5): 572-583, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38390772

RESUMO

Irinotecan-induced severe diarrhea (IISD) not only limits irinotecan's application but also significantly affects patients' quality of life. However, existing animal models often inadequately represent the dynamics of IISD development, progression, and resolution across multiple chemotherapy cycles, yielding non-reproducible and highly variable response with limited clinical translation. Our studies aim to establish a reproducible and validated IISD model that better mimics the pathophysiology progression observed in patients, enhancing translational potential. We investigated the impact of dosing regimens (including different dose, infusion time, and two cycles of irinotecan administration), sex, age, tumor-bearing conditions, and irinotecan formulation on the IISD incidence and severity in mice and rats. Lastly, we investigated above factors' impact on pharmacokinetics of irinotecan, intestinal injury, and carboxylesterase activities. In summary, we successfully established a standard model establishment procedure for an optimized IISD model with highly reproducible severe diarrhea incidence rate (100%) and a low mortality rate (11%) in F344 rats. Additionally, the rats tolerated at least two cycles of irinotecan chemotherapy treatment. In contrast, the mouse model exhibited suboptimal IISD incidence rates (60%) and an extremely high mortality rate (100%). Notably, dosing regimen, age and tumor-bearing conditions of animals emerged as critical factors in IISD model establishment. In conclusion, our rat IISD model proves superior in mimicking pathophysiology progression and characteristics of IISD in patients, which stands as an effective tool for mechanism and efficacy studies in future chemotherapy-induced gut toxicity research.


Assuntos
Diarreia , Modelos Animais de Doenças , Irinotecano , Ratos Endogâmicos F344 , Irinotecano/toxicidade , Animais , Diarreia/induzido quimicamente , Masculino , Feminino , Camundongos , Ratos , Índice de Gravidade de Doença , Relação Dose-Resposta a Droga , Humanos , Reprodutibilidade dos Testes
5.
Haematologica ; 107(10): 2454-2465, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35385924

RESUMO

Anemia of cancer (AoC) with its multifactorial etiology and complex pathology is a poor prognostic indicator for cancer patients. One of the main causes of AoC is cancer-associated inflammation that activates mechanisms, commonly observed in anemia of inflammation, whereby functional iron deficiency and iron-restricted erythropoiesis are induced by increased hepcidin levels in response to raised levels of interleukin-6. So far only a few AoC mouse models have been described, and most of them did not fully recapitulate the interplay of anemia, increased hepcidin levels and functional iron deficiency in human patients. To test if the selection and the complexity of AoC mouse models dictates the pathology or if AoC in mice per se develops independently of iron deficiency, we characterized AoC in Trp53floxWapCre mice that spontaneously develop breast cancer. These mice developed AoC associated with high levels of interleukin-6 and iron deficiency. However, hepcidin levels were not increased and hypoferremia coincided with anemia rather than causing it. Instead, an early shift in the commitment of common myeloid progenitors from the erythroid to the myeloid lineage resulted in increased myelopoiesis and in the excessive production of neutrophils that accumulate in necrotic tumor regions. This process could not be prevented by either iron or erythropoietin treatment. Trp53floxWapCre mice are the first mouse model in which erythropoietin-resistant anemia is described and may serve as a disease model to test therapeutic approaches for a subpopulation of human cancer patients with normal or corrected iron levels who do not respond to erythropoietin.


Assuntos
Anemia , Neoplasias da Mama , Eritropoetina , Deficiências de Ferro , Anemia/tratamento farmacológico , Anemia/etiologia , Anemia/patologia , Animais , Neoplasias da Mama/complicações , Eritropoese , Eritropoetina/farmacologia , Eritropoetina/uso terapêutico , Feminino , Hepcidinas/genética , Humanos , Inflamação/complicações , Interleucina-6/genética , Ferro/uso terapêutico , Camundongos
6.
J Nat Prod ; 84(9): 2486-2495, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34463097

RESUMO

This study aims to characterize the pharmacokinetic (PK) profiles and identify important bioavailability barriers and pharmacological pathways of the key active components (KACs) of Antitumor B (ATB), a chemopreventive agent. KACs (matrine, dictamine, fraxinellone, and maackiain) of ATB were confirmed using the antiproliferative assay and COX-2 inhibition activities in oral cancer cells. The observed in vitro activities of KACs were consistent with their cell signaling pathways predicted using the in silico network pharmacology approach. The pharmacokinetics of KACs were determined after i.v., i.p., and p.o. delivery using ATB extract and a mixture of four KACs in mice. Despite good solubilities and permeabilities, poor oral bioavailabilities were estimated for all KACs, mostly because of first-pass metabolism in the liver (for all KACs) and intestines (for matrine and fraxinellone). Multiple-dose PK studies showed 23.2-fold and 8.5-fold accumulation of dictamine and maackiain in the blood, respectively. Moreover, saliva levels of dictamine and matrine were found significantly higher than their blood levels. In conclusion, the systemic bioavailabilities of ATB-KACs were low, but significant levels of dictamine and matrine were found in saliva upon repeated oral administration. Significant salivary concentrations of matrine justified its possible use as a drug-monitoring tool to track patient compliance during chemoprevention trials.


Assuntos
Disponibilidade Biológica , Medicamentos de Ervas Chinesas/farmacocinética , Neoplasias Bucais/prevenção & controle , Alcaloides/farmacocinética , Animais , Benzofuranos/farmacocinética , Quimioprevenção , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Farmacologia em Rede , Pterocarpanos/farmacocinética , Quinolinas/farmacocinética , Quinolizinas/farmacocinética , Matrinas
7.
Anal Biochem ; 597: 113644, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32105737

RESUMO

Flavonoids interfere with colorimetric protein assays in a concentration- and structure-dependent manner. Degree (≥3) and position (C3) of -OH substitution was associated with intensified interference (p < 0.05). Significant overestimation of protein (~3-5 folds) could occur at higher flavonoid concentrations (>5 µM) and is particularly evident at lower protein concentrations (25-250 µg/ml). Since, healthy human urinary protein (<200 µg/ml) and flavonoids urinary excretion (0.5-2 µg/ml) levels fall in this range, overestimation of protein concentration with flavonoids consumption in diet, including natural supplements, remains relevant issue for diagnostic and research labs. Protein precipitation by acetone to remove interfering flavonoid successfully resolves the problem.


Assuntos
Flavonoides/química , Radical Hidroxila/química , Soroalbumina Bovina/análise , Animais , Bovinos , Flavonoides/metabolismo
8.
Drug Metab Rev ; 49(2): 105-138, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28266877

RESUMO

Glucuronidation is a well-recognized phase II metabolic pathway for a variety of chemicals including drugs and endogenous substances. Although it is usually the secondary metabolic pathway for a compound preceded by phase I hydroxylation, glucuronidation alone could serve as the dominant metabolic pathway for many compounds, including some with high aqueous solubility. Glucuronidation involves the metabolism of parent compound by UDP-glucuronosyltransferases (UGTs) into hydrophilic and negatively charged glucuronides that cannot exit the cell without the aid of efflux transporters. Therefore, elimination of parent compound via glucuronidation in a metabolic active cell is controlled by two driving forces: the formation of glucuronides by UGT enzymes and the (polarized) excretion of these glucuronides by efflux transporters located on the cell surfaces in various drug disposition organs. Contrary to the common assumption that the glucuronides reaching the systemic circulation were destined for urinary excretion, recent evidences suggest that hepatocytes are capable of highly efficient biliary clearance of the gut-generated glucuronides. Furthermore, the biliary- and enteric-eliminated glucuronides participate into recycling schemes involving intestinal microbes, which often prolong their local and systemic exposure, albeit at low systemic concentrations. Taken together, these recent research advances indicate that although UGT determines the rate and extent of glucuronide generation, the efflux and uptake transporters determine the distribution of these glucuronides into blood and then to various organs for elimination. Recycling schemes impact the apparent plasma half-life of parent compounds and their glucuronides that reach intestinal lumen, in addition to prolonging their gut and colon exposure.


Assuntos
Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Animais , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Farmacocinética
9.
Blood ; 121(26): 5158-66, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23667053

RESUMO

Hypoxia is a prominent feature in the maintenance of hematopoietic stem cell (HSC) quiescence and multipotency. Hypoxia-inducible factor (HIF) prolyl hydroxylase domain proteins (PHDs) serve as oxygen sensors and may therefore regulate this system. Here, we describe a mouse line with conditional loss of HIF prolyl hydroxylase 2 (PHD2) in very early hematopoietic precursors that results in self-renewal of multipotent progenitors under steady-state conditions in a HIF1α- and SMAD7-dependent manner. Competitive bone marrow (BM) transplantations show decreased peripheral and central chimerism of PHD2-deficient cells but not of the most primitive progenitors. Conversely, in whole BM transfer, PHD2-deficient HSCs replenish the entire hematopoietic system and display an enhanced self-renewal capacity reliant on HIF1α. Taken together, our results demonstrate that loss of PHD2 controls the maintenance of the HSC compartment under physiological conditions and causes the outcompetition of PHD2-deficient hematopoietic cells by their wild-type counterparts during stress while promoting the self-renewal of very early hematopoietic progenitors.


Assuntos
Células-Tronco Hematopoéticas/citologia , Hipóxia/fisiopatologia , Células-Tronco Multipotentes/citologia , Pró-Colágeno-Prolina Dioxigenase/fisiologia , Estresse Fisiológico , Animais , Transplante de Medula Óssea , Ciclo Celular , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Integrases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Multipotentes/metabolismo , Proteína Smad7/metabolismo
10.
Blood ; 121(8): 1436-45, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23264599

RESUMO

Erythropoiesis must be tightly balanced to guarantee adequate oxygen delivery to all tissues in the body. This process relies predominantly on the hormone erythropoietin (EPO) and its transcription factor hypoxia inducible factor (HIF). Accumulating evidence suggests that oxygen-sensitive prolyl hydroxylases (PHDs) are important regulators of this entire system. Here, we describe a novel mouse line with conditional PHD2 inactivation (cKO P2) in renal EPO producing cells, neurons, and astrocytes that displayed excessive erythrocytosis because of severe overproduction of EPO, exclusively driven by HIF-2α. In contrast, HIF-1α served as a protective factor, ensuring survival of cKO P2 mice with HCT values up to 86%. Using different genetic approaches, we show that simultaneous inactivation of PHD2 and HIF-1α resulted in a drastic PHD3 reduction with consequent overexpression of HIF-2α-related genes, neurodegeneration, and lethality. Taken together, our results demonstrate for the first time that conditional loss of PHD2 in mice leads to HIF-2α-dependent erythrocytosis, whereas HIF-1α protects these mice, providing a platform for developing new treatments of EPO-related disorders, such as anemia.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hematopoese Extramedular/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Policitemia/genética , Pró-Colágeno-Prolina Dioxigenase/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Encéfalo/fisiologia , Células Cultivadas , Eritropoetina/genética , Eritropoetina/metabolismo , Feminino , Fibroblastos/citologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia , Queratinócitos/citologia , Rim/citologia , Rim/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/genética , Degeneração Neural/metabolismo , Policitemia/metabolismo , Policitemia/patologia , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Índice de Gravidade de Doença , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/patologia
11.
Int J Cancer ; 134(4): 849-58, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23913502

RESUMO

The tumor microenvironment plays a pivotal role during cancer development and progression. The balance between suppressive and cytotoxic responses of the tumor immune microenvironment has been shown to have a direct effect on the final outcome in various human and experimental tumors. Recently, we demonstrated that the oxygen sensor HIF-prolyl hydroxylase-2 (PHD2) plays a detrimental role in tumor cells, stimulating systemic growth and metastasis in mice. In our current study, we show that the conditional ablation of PHD2 in the hematopoietic system also leads to reduced tumor volume, intriguingly generated by an imbalance between enhanced cell death and improved proliferation of tumor cells. This effect seems to rely on the overall downregulation of protumoral as well as antitumoral cytokines. Using different genetic approaches, we were able to confine this complex phenotype to the crosstalk of PHD2-deficient myeloid cells and T-lymphocytes. Taken together, our findings reveal a multifaceted role for PHD2 in several hematopoietic lineages during tumor development and might have important implications for the development of tumor therapies in the future.


Assuntos
Carcinoma Pulmonar de Lewis/prevenção & controle , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Prolina Dioxigenases do Fator Induzível por Hipóxia/fisiologia , Melanoma Experimental/prevenção & controle , Células Mieloides/patologia , Linfócitos T/patologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Medula Óssea/metabolismo , Medula Óssea/patologia , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patologia , Movimento Celular , Proliferação de Células , Citocinas/genética , Citocinas/metabolismo , Progressão da Doença , Citometria de Fluxo , Perfilação da Expressão Gênica , Técnicas Imunoenzimáticas , Integrases/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Linfócitos T/metabolismo
12.
Mol Pharm ; 9(4): 862-73, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22352375

RESUMO

Flavonoids are polyphenolic compounds with various claimed health benefits, but the extensive metabolism by uridine-5'-diphospho-glucuronosyltransferases (UGTs) and sulfotransferases (SULTs) in liver and intestine led to poor oral bioavailabilities. The effects of structural changes on the sulfonation of flavonoids have not been systemically determined, although relevant effects of structural changes on the glucuronidation of flavonoids had. We performed the regiospecific sulfonation of sixteen flavonoids from five different subclasses of flavonoids, which are represented by apigenin (flavone), genistein (isoflavone), naringenin (flavanone), kaempherol (flavonol), and phloretin (chalcone). Additional studies were performed using 4 monohydroxyl flavonoids with a -OH group at the 3, 4', 5 or 7 position, followed by 5 dihydroxyl flavonoids, and 2 trihydroxyl flavonoids by using expressed human SULT1A3 and Caco-2 cell lysates. We found that these compounds were exclusively sulfated at the 7-OH position by SULT1A3 and primarily sulfated at the 7-OH position in Caco-2 cell lysates with minor amounts of 4'-O-sulfates formed as well. Sulfonation rates measured using SULT1A3 and Caco-2 cell lysates were highly correlated at substrate concentrations of 2.5 and 10 µM. Molecular docking studies provided structural explanations as to why sulfonation only occurred at the 7-OH position of flavones, flavonols and flavanones. In conclusion, molecular docking studies explain why SULT1A3 exclusively mediates sulfonation at the 7-OH position of flavones/flavonols, and correlation studies indicate that SULT1A3 is the main isoform responsible for flavonoid sulfonation in the Caco-2 cells.


Assuntos
Flavonoides/metabolismo , Sulfotransferases/metabolismo , Apigenina/química , Apigenina/metabolismo , Arilsulfotransferase , Sítios de Ligação , Células CACO-2 , Flavanonas/química , Flavanonas/metabolismo , Flavonoides/química , Genisteína/química , Genisteína/metabolismo , Humanos , Quempferóis/química , Quempferóis/metabolismo , Cinética , Floretina/química , Floretina/metabolismo , Sulfotransferases/química , Espectrometria de Massas em Tandem
13.
Food Chem Toxicol ; 166: 113246, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35728726

RESUMO

Irinotecan is a first-line treatment for colorectal cancer and the prodrug of 7-ethyl-10-hydroxy-camptothecin (SN-38). However, its fatal gastrointestinal (GI) toxicity raises serious concern. In liver, irinotecan generates its inactive metabolite, SN-38G via UDP-glucuronosyltransferase (UGT)1A1. Subsequently, SN-38G is excreted into GI tract where it is reactivated by microbiome to yield the toxic metabolite, SN-38. Activation of toll-like receptor (TLR)/myeloid differentiation primary response 88 (MyD88) by bacterial endotoxin decreases drug-metabolizing enzymes. In this study, we treated C57BL6/J mice with 50 mg/kg irinotecan once daily until observing grade 4 diarrhea. Mice were sacrificed on day0, day2 and day8. Based on the finding in C57BL6/J mice, we repeated the treatment in Tlr2-/-, Tlr4-/- and Myd88-/- mice to determine the impact of inflammation on UGT metabolism. Our toxicity study in C57BL6/J mice showed that mice started bloody diarrhea after 6 days' injection of irinotecan. Ugt1a1 expression in GI tract started decreasing after 24h since first dose, before the onset of diarrhea. In Tlr4-/- and Myd88-/- mice, no Ugt1a1 reduction was observed in distal GI tract after irinotecan injection. In Tlr2-/- mice, intestinal Ugt1a1 expression was down-regulated. Our results indicate that after two doses of irinotecan, mice started losing capability of detoxifying SN-38. TLR4 plays more important role in Ugt1a1 reduction than TLR2, despite that TLR2 and TLR4 share MyD88 as common adaptor protein. We concluded that irinotecan reduced intestinal Ugt1a1 via TLR4/MyD88 pathway, which eventually triggers the onset of diarrhea. Our finding unveils a novel mechanism underlying irinotecan-induced diarrhea and provides a new direction to prevent chemotherapy side effect.


Assuntos
Antineoplásicos Fitogênicos , Glucuronosiltransferase , Irinotecano , Fator 88 de Diferenciação Mieloide , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Camptotecina/toxicidade , Diarreia/induzido quimicamente , Diarreia/metabolismo , Glucuronosiltransferase/metabolismo , Irinotecano/efeitos adversos , Camundongos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Difosfato de Uridina
14.
Cancers (Basel) ; 15(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36612086

RESUMO

This study reports the first clinical evidence of significantly high secretion of matrine in a multi-component botanical (Antitumor B, ATB) into human saliva from the systemic circulation. This is of high clinical significance as matrine can be used as a monitoring tool during longitudinal clinical studies to overcome the key limitation of poor patient compliance often reported in cancer chemoprevention trials. Both matrine and dictamine were detected in the saliva and plasma samples but only matrine was quantifiable after the oral administration of ATB tablets (2400 mg) in 8 healthy volunteers. A significantly high saliva/plasma ratios for Cmax (6.5 ± 2.0) and AUC0-24 (4.8 ± 2.0) of matrine suggested an active secretion in saliva probably due to entero-salivary recycling as evident from the long half-lives (t1/2 plasma = 10.0 ± 2.8 h, t1/2 saliva = 13.4 ± 6.9 h). The correlation between saliva and plasma levels of matrine was established using a population compartmental pharmacokinetic co-model. Moreover, a species-relevant PBPK model was developed to adequately describe the pharmacokinetic profiles of matrine in mouse, rat, and human. In conclusion, matrine saliva concentrations can be used as an excellent marker compound for mechanistic studies of active secretion of drugs from plasma to saliva as well as monitor the patient's compliance to the treatment regimen in upcoming clinical trials of ATB.

15.
Drug Discov Today ; 27(10): 103316, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35820618

RESUMO

Gut microbial ß-glucuronidase (gmGUS) is involved in the disposition of many endogenous and exogenous compounds. Preclinical studies have shown that inhibiting gmGUS activity affects drug disposition, resulting in reduced toxicity in the gastrointestinal tract (GIT) and enhanced systemic efficacy. Additionally, manipulating gmGUS activity is expected to be effective in preventing/treating local or systemic diseases. Although results from animal studies are promising, challenges remain in developing drugs by targeting gmGUS. Here, we review the role of gmGUS in host health under physiological and pathological conditions, the impact of gmGUS on the disposition of phenolic compounds, models used to study gmGUS activity, and the perspectives and challenges in developing drugs by targeting gmGUS.


Assuntos
Microbioma Gastrointestinal , Glucuronidase , Animais , Trato Gastrointestinal , Glucuronidase/farmacologia
16.
Nat Cell Biol ; 24(6): 872-884, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668135

RESUMO

Mitochondrial metabolites regulate leukaemic and normal stem cells by affecting epigenetic marks. How mitochondrial enzymes localize to the nucleus to control stem cell function is less understood. We discovered that the mitochondrial metabolic enzyme hexokinase 2 (HK2) localizes to the nucleus in leukaemic and normal haematopoietic stem cells. Overexpression of nuclear HK2 increases leukaemic stem cell properties and decreases differentiation, whereas selective nuclear HK2 knockdown promotes differentiation and decreases stem cell function. Nuclear HK2 localization is phosphorylation-dependent, requires active import and export, and regulates differentiation independently of its enzymatic activity. HK2 interacts with nuclear proteins regulating chromatin openness, increasing chromatin accessibilities at leukaemic stem cell-positive signature and DNA-repair sites. Nuclear HK2 overexpression decreases double-strand breaks and confers chemoresistance, which may contribute to the mechanism by which leukaemic stem cells resist DNA-damaging agents. Thus, we describe a non-canonical mechanism by which mitochondrial enzymes influence stem cell function independently of their metabolic function.


Assuntos
Hexoquinase , Leucemia Mieloide Aguda , Cromatina/metabolismo , DNA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo
17.
J Pharmacol Exp Ther ; 336(2): 403-13, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21068207

RESUMO

Glucuronidation is often recognized as one of the rate-determining factors that limit the bioavailability of flavonols. Hence, design and synthesis of more bioavailable flavonols would benefit from the establishment of predictive models of glucuronidation using kinetic parameters [e.g., K(m), V(max), intrinsic clearance (CL(int)) = V(max)/K(m)] derived for flavonols. This article aims to construct position (3-OH)-specific comparative molecular field analysis (CoMFA) models to describe UDP-glucuronosyltransferase (UGT) 1A9-mediated glucuronidation of flavonols, which can be used to design poor UGT1A9 substrates. The kinetics of recombinant UGT1A9-mediated 3-O-glucuronidation of 30 flavonols was characterized, and kinetic parameters (K(m), V(max), CL(int)) were obtained. The observed K(m), V(max), and CL(int) values of 3-O-glucuronidation ranged from 0.04 to 0.68 µM, 0.04 to 12.95 nmol/mg/min, and 0.06 to 109.60 ml/mg/min, respectively. To model UGT1A9-mediated glucuronidation, 30 flavonols were split into the training (23 compounds) and test (7 compounds) sets. These flavonols were then aligned by mapping the flavonols to specific common feature pharmacophores, which were used to construct CoMFA models of V(max) and CL(int), respectively. The derived CoMFA models possessed good internal and external consistency and showed statistical significance and substantive predictive abilities (V(max) model: q(2) = 0.738, r(2) = 0.976, r(pred)(2) = 0.735; CL(int) model: q(2) = 0.561, r(2) = 0.938, r(pred)(2) = 0.630). The contour maps derived from CoMFA modeling clearly indicate structural characteristics associated with rapid or slow 3-O-glucuronidation. In conclusion, the approach of coupling CoMFA analysis with a pharmacophore-based structural alignment is viable for constructing a predictive model for regiospecific glucuronidation rates of flavonols by UGT1A9.


Assuntos
Flavonóis/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/fisiologia , Modelos Moleculares , Flavonóis/química , Humanos , Relação Quantitativa Estrutura-Atividade , UDP-Glucuronosiltransferase 1A
18.
Elife ; 102021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34196607

RESUMO

Many orally administered phenolic drugs undergo enterohepatic recycling (EHR), presumably mediated by the hepatic phase II enzymes. However, the disposition of extrahepatically generated phase II metabolites is unclear. This paper aims to determine the new roles of liver and intestine in the disposition of oral phenolics. Sixteen representative phenolics were tested using direct portal vein infusion and/or intestinal perfusion. The results showed that certain glucuronides were efficiently recycled by liver. OATP1B1/1B3/2B1 were the responsible uptake transporters. Hepatic uptake is the rate-limiting step in hepatic recycling. Our findings showed that the disposition of many oral phenolics is mediated by intestinal glucuronidation and hepatic recycling. A new disposition mechanism 'Hepatoenteric Recycling (HER)", where intestine is the metabolic organ and liver is the recycling organ, was revealed. Further investigations focusing on HER should help interpret how intestinal aliments or co-administered drugs that alter gut enzymes (e.g. UGTs) expression/activities will impact the disposition of phenolics.


Assuntos
Intestino Delgado/metabolismo , Fígado/metabolismo , Preparações Farmacêuticas/metabolismo , Fenóis/administração & dosagem , Compostos Fitoquímicos/metabolismo , Administração Oral , Animais , Feminino , Masculino , Preparações Farmacêuticas/administração & dosagem , Fenóis/metabolismo , Compostos Fitoquímicos/administração & dosagem , Ratos , Ratos Wistar
19.
Mol Pharm ; 7(3): 664-79, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20297805

RESUMO

The present study aims to predict the regiospecific glucuronidation of three dihydroxyflavones and seven monohydroxyflavones in human liver and intestinal microsomes using recombinant UGT isoforms. Seven monohydroxyflavones (or HFs), 2'-, 3'-, 4'-, 3-, 5-, 6-, and 7-hydroxyflavone, and three dihydroxyflavones (or diHFs), 3,7-dihydroxyflavone (3,7-diHF), 3,5-dihydroxyflavone (3,5-diHF), and 3,4'-dihydroxyflavone (3,4'-diHF), were chosen, and rates were measured at 2.5, 10, and 35 microM. The results indicated that the position of glucuronidation of three diHFs could be determined by using the UV spectra of relevant HFs. The results also indicated that UGT1A1, UGT1A7, UGT1A8, UGT1A9, UGT1A10 and UGT2B7 are the most important six UGT isoforms for metabolizing the chosen flavones. Regardless of isoforms used, 3-HF was always metabolized the fastest whereas 5-HF was usually metabolized the slowest, probably due to the formation of an intramolecular hydrogen bond between 4-carbonyl and 5-OH group. Relevant UGT isoform-specific metabolism rates generally correlated well with the rates of glucuronidation in human intestinal and liver microsomes at each of the three tested concentrations. In conclusion, the glucuronidation "fingerprint" of seven selected monohydroxyflavones was affected by UGT isoforms used, positions of the -OH group, and the substrate concentrations, and the rates of glucuronidation by important recombinant UGTs correlated well with those obtained using human liver and intestinal microsomes.


Assuntos
Flavonas/metabolismo , Glucuronosiltransferase/metabolismo , Mucosa Intestinal/metabolismo , Isoenzimas/metabolismo , Microssomos Hepáticos/metabolismo , Microssomos/metabolismo , Proteínas Recombinantes/metabolismo , Cromatografia Líquida , Glucuronosiltransferase/genética , Humanos , Isoenzimas/genética , Proteínas Recombinantes/genética , Espectrometria de Massas em Tandem , UDP-Glucuronosiltransferase 1A
20.
STAR Protoc ; 1(3): 100163, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377057

RESUMO

We describe a method to silence genes in primary acute myeloid leukemia cells by transducing them with shRNA in lentiviral vectors. The transduction of primary non-adherent cells is particularly challenging. The protocol will aid in performing such experiments and is particularly helpful to prepare cells for in vivo engraftment studies. Use of a special medium supplemented with cytokines preserves the viability of the leukemic stem cells and their ability to engraft the marrow of immune-deficient mice. For complete details on the use and execution of this protocol, please refer to Singh et al. (2020).


Assuntos
Vetores Genéticos/metabolismo , Lentivirus/metabolismo , Leucemia Mieloide Aguda/genética , Transplante de Neoplasias , Transdução Genética , Animais , Humanos , Camundongos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA