RESUMO
Covering: 1982 to up to the end of 2022Bioassay guided purification of the extracts of Combretum caffrum led to the discovery of six series of combretastatins A-D with cytotoxic activities ranging from sub nM to >50 µM ED50's against a wide variety of cancer cell lines. Of these, cis-stilbenes combretastatins A-4 and A-1 were the most potent, exhibiting in vivo efficacy against a wide variety of tumor types in murine models. These antimitotic agents inhibited tubulin polymerization by reversibly binding to the colchicine binding sites. They inhibited tumor growth by a novel antivascular and antineogenesis mechanism in which they stopped blood flows to the blood vessels causing necrosis. Over 20 clinical trials of the phosphate prodrugs of combretastatin A-4 (CA4P) and A-1 (CA1P) showed objective and stable responses against many tumor types, with increased survival times of many patients along with the confirmed cure of certain patients inflicted with anaplastic thyroid cancers. Medicinal chemistry efforts led to the identification of three new leads (AVE8062, BNC105P, SCB01A) with improved in vitro and in vivo potency and an often-improved cellular spectrum. Unfortunately, these preclinical improvements did not translate clinically in any meaningful way. Objectively, CA4P remained the best compound and has garnered many Orphan drug designations by FDA. Clinical trials with tumor genetic mapping, particularly from previous responders, may help boost the success of these compounds in future studies. A comprehensive review of combretastatin series A-D, including bioassay guided discovery, total syntheses, and structure-activity relationship (SAR) studies, biological and mechanistic studies, and preclinical and clinical evaluations of the isolated combretastatins and analogs, along with the personal perspective of the author who originated this project, is presented.
Assuntos
Antineoplásicos , Bibenzilas , Neoplasias , Estilbenos , Humanos , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Relação Estrutura-Atividade , Bibenzilas/farmacologia , Bibenzilas/uso terapêutico , Neoplasias/tratamento farmacológico , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/uso terapêutico , Estilbenos/farmacologia , Estilbenos/químicaRESUMO
Research collaborations and licensing deals are critical for the discovery and development of life-saving drugs. This practice has been ongoing since the inception of the pharmaceutical industry. The current process of drug discovery and development is complex, regulated, and highly regimented, having evolved over time. Academia excels in the discovery of fundamental scientific concepts and biological processes, while industry excels in translational science and product development. Potential for collaboration exists at every step of the drug discovery and development continuum. This perspective walks through such collaborative activities, provides examples, and offers tips for potential collaborations.
Assuntos
Descoberta de Drogas , Indústria Farmacêutica , Humanos , História do Século XX , Comportamento Cooperativo , História do Século XXI , Desenvolvimento de Medicamentos , AcademiaRESUMO
Novel bacterial topoisomerase inhibitors (NBTIs) are the newest members of gyrase inhibitor broad-spectrum antibacterial agents, represented by the most advanced member, gepotidacin, a 4-amino-piperidine linked NBTI, which is undergoing phase III clinical trials for treatment of urinary tract infections (UTI). We have extensively reported studies on oxabicyclooctane linked NBTIs, including AM-8722. The present study summarizes structure activity relationship (SAR) of AM-8722 leading to identification of 7-fluoro-1-cyanomethyl-1,5-naphthyridin-2-one based NBTI (16, AM-8888) with improved potency and spectrum (MIC values of 0.016-4 µg/mL), with Pseudomonas aeruginosa being the least sensitive strain (MIC 4 µg/mL).
Assuntos
Antibacterianos , Inibidores da Topoisomerase , Antibacterianos/química , Antibacterianos/farmacologia , DNA Girase/metabolismo , DNA Topoisomerase IV , Testes de Sensibilidade Microbiana , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade , Tioinosina/análogos & derivados , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase/química , Inibidores da Topoisomerase/farmacologiaRESUMO
Dolastatin 10 is an extremely potent broad-spectrum antitubulin anticancer pentapeptide isolated from Dolabella auricularia. The two-dimensional structure was elucidated by NMR and mass spectrometric analyses. The absolute configuration was determined by a convergent total synthesis. SAR studies established that modifications at C- and N-terminals were tolerated for cytotoxic activity. Human clinical trials of dolastatin 10 and auristatin PE (a C-terminal analog) showed occasional signs of efficacy but failed due to lack of separation of toxicity and efficacy. Nanomolar cytotoxicity helped transition this class of pentapeptides to the next phase of development as antibody drug conjugates (ADCs) by reducing systemic toxicity. Four ADC drugs (Adcetris, Padcev, Polivy, and Blenrep) carrying monomethyl auristatin E (MMAE, vedotin) and monomethyl auristatin F (MMAF, mafodotin) payloads have been approved for treatment of a number of cancers expressing antibody-specific antigens. More than 36 ADCs carrying a variety of pentapeptide analogues are undergoing preclinical and clinical developments. They are being evaluated in more than 200 human trials. A comprehensive review of the discovery, total synthesis of dolastatin 10 and new amino acids, SAR studies of dolastatin 10 and auristatins, conjugations to antibodies, and preclinical and clinical development of ADCs have been presented.
Assuntos
Antineoplásicos , Depsipeptídeos , Imunoconjugados , Antineoplásicos/química , Antineoplásicos/farmacologia , Brentuximab Vedotin , Linhagem Celular Tumoral , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Humanos , Imunoconjugados/química , Imunoconjugados/farmacologiaRESUMO
Clostridioides difficile is a commensal Gram-positive gut bacterium that causes C. difficile-associated diarrhea. Currently available antibacterial therapeutic treatment options are effective except for the repeated recurrences significantly burdening the health care system and causing mortality. The development of new therapeutic modalities including new effective antibiotics with a low rate of recurrence has been unpredictive and exceedingly challenging, requiring continued profiling of many new classes of antibiotics. Nocathiacins and thiazomycins are a class of thiazolyl peptides exhibiting potent and selective broad-spectrum Gram-positive activity including activity against the anaerobe C. difficile. These compounds showed MIC values of 0.015-0.06 µg/mL against C. difficile with more than 100-200-fold selectivity versus commensurate Gram-negative Bacteroides fragilis. Nocathiacin I and one of its analogs exhibited potent in vivo efficacy in the gold-standard hamster model of C. difficile infection, providing 100% protection in this lethal model at 6.25 mg/kg orally twice daily. The efficacy was corroborated by robust reduction of cecum C. difficile burden and proportionate exposure of the compounds in the cecum contents without any systemic absorption. In this paper, details of the results of in vitro, in vivo, pharmacodynamics, and pharmacokinetic studies have been described.
Assuntos
Clostridioides difficile , Clostridioides , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Cricetinae , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos , TiazóisRESUMO
Natural product congeners serve a useful role in the understanding of natural product biosynthesis and structure-activity relationships. A minor congener with superior activity, selectivity, and modifiable functional groups could serve as a more effective lead structure and replace even the original lead molecule that was used for medicinal chemistry modifications. Currently, no effective method exists to discover targeted congeners rapidly, specifically, and selectively from producing sources. Herein, a new method based on liquid-chromatography tandem-mass spectrometry combination is evaluated for targeted discovery of congeners of platensimycin and platencin from the extracts of Streptomyces platensis. By utilizing a precursor-ion searching protocol, tandem mass spectrometry not only confirmed the presence of known congeners but also provided unambiguous detection of many previously unknown congeners of platensimycin and platencin. This high-throughput and quantitative method can be rapidly and broadly applied for dereplication and congener discovery from a variety of producing sources, even when the targeted compounds are obscured by the presence of unrelated natural products.
Assuntos
Adamantano/química , Aminobenzoatos/química , Aminofenóis/química , Anilidas/química , Ensaios de Triagem em Larga Escala/métodos , Compostos Policíclicos/química , Streptomyces/química , Adamantano/isolamento & purificação , Aminobenzoatos/isolamento & purificação , Aminofenóis/isolamento & purificação , Anilidas/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Cromatografia Líquida , Estrutura Molecular , Compostos Policíclicos/isolamento & purificação , Relação Estrutura-Atividade , Espectrometria de Massas em TandemRESUMO
An increased contribution of de novo lipogenesis (DNL) may play a role in cases of dyslipidemia and adipose accretion; this suggests that inhibition of fatty acid synthesis may affect clinical phenotypes. Since it is not clear whether modulation of one step in the lipogenic pathway is more important than another, the use of tracer methods can provide a deeper level of insight regarding the control of metabolic activity. Although [2H]water is generally considered a reliable tracer for quantifying DNL in vivo (it yields a homogenous and quantifiable precursor labeling), the relatively long half-life of body water is thought to limit the ability of performing repeat studies in the same subjects; this can create a bottleneck in the development and evaluation of novel therapeutics for inhibiting DNL. Herein, we demonstrate the ability to perform back-to-back studies of DNL using [2H]water. However, this work uncovered special circumstances that affect the data interpretation, i.e., it is possible to obtain seemingly negative values for DNL. Using a rodent model, we have identified a physiological mechanism that explains the data. We show that one can use [2H]water to test inhibitors of DNL by performing back-to-back studies in higher species [i.e., treat nonhuman primates with platensimycin, an inhibitor of fatty acid synthase]; studies also demonstrate the unsuitability of [13C]acetate.
Assuntos
Óxido de Deutério/farmacologia , Ácido Palmítico/sangue , Acetatos/sangue , Adipogenia , Animais , Feminino , Meia-Vida , Lipogênese/efeitos dos fármacos , Macaca mulatta , Masculino , Camundongos Endogâmicos C57BLRESUMO
Oxabicyclooctane-linked novel bacterial topoisomerase inhibitors (NBTIs) represent a new class of recently described antibacterial agents with broad-spectrum activity. NBTIs dually inhibit the clinically validated bacterial targets DNA gyrase and topoisomerase IV and have been shown to bind distinctly from known classes of antibacterial agents directed against these targets. Herein we report the molecular, cellular, and in vivo characterization of AM-8722 as a representative N-alkylated-1,5-naphthyridone left-hand-side-substituted NBTI. Consistent with its mode of action, macromolecular labeling studies revealed a specific effect of AM-8722 to dose dependently inhibit bacterial DNA synthesis. AM-8722 displayed greater intrinsic enzymatic potency than levofloxacin versus both DNA gyrase and topoisomerase IV from Staphylococcus aureus and Escherichia coli and displayed selectivity against human topoisomerase II. AM-8722 was rapidly bactericidal and exhibited whole-cell activity versus a range of Gram-negative and Gram-positive organisms, with no whole-cell potency shift due to the presence of DNA or human serum. Frequency-of-resistance studies demonstrated an acceptable rate of resistance emergence in vitro at concentrations 16- to 32-fold the MIC. AM-8722 displayed acceptable pharmacokinetic properties and was shown to be efficacious in mouse models of bacterial septicemia. Overall, AM-8722 is a selective and potent NBTI that displays broad-spectrum antimicrobial activity in vitro and in vivo.
Assuntos
Antibacterianos/farmacologia , Ciclo-Octanos/farmacologia , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerases Tipo II/metabolismo , Inibidores da Topoisomerase II/farmacologia , Animais , Linhagem Celular , DNA Bacteriano/genética , Cães , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Ratos , Ratos Wistar , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genéticaRESUMO
Kibdelomycin is a complex novel antibiotic, discovered by applying a highly sophisticated chemical-genetic Staphylococcus aureus Fitness Test (SaFT) approach, that inhibits the clinically established bacterial targets, gyrase and topoisomerase IV. It exhibits broad-spectrum antibacterial activity against aerobic bacteria including MRSA and Acinetobacter baumannii. It is slowly bactericidal and has a low frequency of resistance. In an anaerobic environment, it exhibits narrow-spectrum activity and inhibits the growth of gut bacteria Clostridium difficile (MIC 0.125µg/mL) without affecting the growth of commensal Gram-negative organisms particularly, Bacteroides sp. It is highly efficacious in the hamster model of C. difficile infection providing 100% protection at >6mg/kg and 80% protection at 1.56mg/kg by oral dosing without systemic exposure. X-ray co-crystal structures of kibdelomycin bound to GyrB and ParE showed a unique dual arm 'U shaped' multisite binding never encountered with any other gyrase inhibitors. Kibdelomycin is poised for preclinical development for C. difficile treatment, and most importantly, the co-crystal structures of kibdelomycin provide unique insight for structure-guided structure modification, which could lead to better broader-spectrum systemic antibiotic potentially covering many ESKAPE pathogens.
Assuntos
Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Descoberta de Drogas , Pirróis/farmacologia , Pirrolidinonas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Clostridioides difficile/enzimologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Pirróis/síntese química , Pirróis/química , Pirrolidinonas/síntese química , Pirrolidinonas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/químicaRESUMO
Bacterial resistance to antibiotics continues to grow and pose serious challenges, while the discovery rate for new antibiotics declines. Kibdelomycin is a recently discovered natural-product antibiotic that inhibits bacterial growth by inhibiting the bacterial DNA replication enzymes DNA gyrase and topoisomerase IV. It was reported to be a broad-spectrum aerobic Gram-positive agent with selective inhibition of the anaerobic bacterium Clostridium difficile. We have extended the profiling of kibdelomycin by using over 196 strains of Gram-positive and Gram-negative aerobic pathogens recovered from worldwide patient populations. We report the MIC50s, MIC90s, and bactericidal activities of kibdelomycin. We confirm the Gram-positive spectrum and report for the first time that kibdelomycin shows strong activity (MIC90, 0.125 µg/ml) against clinical strains of the Gram-negative nonfermenter Acinetobacter baumannii but only weak activity against Pseudomonas aeruginosa. We confirm that well-characterized resistant strains of Staphylococcus aureus and Streptococcus pneumoniae show no cross-resistance to kibdelomycin and quinolones and coumarin antibiotics. We also show that kibdelomycin is not subject to efflux in Pseudomonas, though it is in Escherichia coli, and it is generally affected by the outer membrane permeability entry barrier in the nonfermenters P. aeruginosa and A. baumannii, which may be addressable by structure-based chemical modification.
Assuntos
Antibacterianos/farmacologia , Pirróis/farmacologia , Pirrolidinonas/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacosRESUMO
Oxabicyclooctane linked novel bacterial topoisomerase inhibitors (NBTIs) are new class of recently reported broad-spectrum antibacterial agents. They target bacterial DNA gyrase and topoisomerase IV and bind to a site different than quinolones. They show no cross-resistance to known antibiotics and provide opportunity to combat drug-resistant bacteria. A structure activity relationship of the C-2 substituted ether analogs of 1,5-naphthyridine oxabicyclooctane-linked NBTIs are described. Synthesis and antibacterial activities of a total of 63 analogs have been summarized representing alkyl, cyclo alkyl, fluoro alkyl, hydroxy alkyl, amino alkyl, and carboxyl alkyl ethers. All compounds were tested against three key strains each of Gram-positive and Gram-negative bacteria as well as for hERG binding activities. Many key compounds were also tested for the functional hERG activity. Six compounds were evaluated for efficacy in a murine bacteremia model of Staphylococcus aureus infection. Significant tolerance for the ether substitution (including polar groups such as amino and carboxyl) at C-2 was observed for S. aureus activity however the same was not true for Enterococcus faecium and Gram-negative strains. Reduced clogD generally showed reduced hERG activity and improved in vivo efficacy but was generally associated with decreased overall potency. One of the best compounds was hydroxy propyl ether (16), which mainly retained the potency, spectrum and in vivo efficacy of AM8085 associated with the decreased hERG activity and improved physical property.
Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Naftiridinas/química , Relação Estrutura-Atividade , Animais , Antibacterianos/síntese química , Antibacterianos/farmacocinética , Técnicas de Química Sintética , Ciclo-Octanos/química , DNA Girase/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Canal de Potássio ERG1 , Enterococcus faecium/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/metabolismo , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Ratos Sprague-Dawley , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologiaRESUMO
Oxabicyclooctane linked 1,5-naphthyridinyl-pyridoxazinones are novel broad-spectrum bacterial topoisomerase inhibitors (NBTIs) targeting bacterial DNA gyrase and topoisomerase IV at a site different than quinolones. Due to lack of cross-resistance to known antibiotics they present excellent opportunity to combat drug-resistant bacteria. A structure activity relationship of the pyridoxazinone moiety is described in this Letter. Chemical synthesis and activities of NBTIs with substitutions at C-3, C-4 and C-7 of the pyridoxazinone moiety with halogens, alkyl groups and methoxy group has been described. In addition, substitutions of the linker NH proton and its transformation into amide analogs of AM-8085 and AM-8191 have been reported. Fluoro, chloro, and methyl groups at C-3 of the pyridoxazinone moiety retained the potency and spectrum. In addition, a C-3 fluoro analog showed 4-fold better oral efficacy (ED50 3.9 mg/kg) as compared to the parent AM-8085 in a murine bacteremia model of infection of Staphylococcus aureus. Even modest polarity (e.g., methoxy) is not tolerated at C-3 of the pyridoxazinone unit. The basicity and NH group of the linker is important for the activity when CH2 is at the linker position-8. However, amides (with linker position-8 ketone) with a position-7 NH or N-methyl group retained potency and spectrum suggesting that neither basicity nor hydrogen-donor properties of the linker amide NH is essential for the activity. This would suggest likely an altered binding mode of the linker position-7,8 amide containing compounds. The amides showed highly improved hERG (functional IC50 >30 µM) profile.
Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Ciclo-Octanos/química , Avaliação Pré-Clínica de Medicamentos/métodos , Relação Estrutura-Atividade , Inibidores da Topoisomerase/química , Administração Oral , Animais , Antibacterianos/administração & dosagem , Técnicas de Química Sintética , DNA Topoisomerase IV/antagonistas & inibidores , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/metabolismo , Compostos Heterocíclicos com 2 Anéis/química , Compostos Heterocíclicos com 2 Anéis/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Naftiridinas/química , Naftiridinas/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Inibidores da Topoisomerase/farmacologiaRESUMO
Bacterial resistance is rapidly growing, necessitating the need to discover new agents. Novel bacterial topoisomerase inhibitors (NBTIs) are new class of broad-spectrum antibacterial agents targeting bacterial DNA gyrase and topoisomerase IV. This class of inhibitors binds to an alternative binding site relative to fluoroquinolones and shows no cross-resistance to quinolones. NBTIs consist of three structural motifs. A structure activity relationship of the left hand motif 1,5-naphthyridine of oxabicyclooctane-linked NBTIs is described. Fifty five compounds were evaluated against a panel of key Gram-positive and Gram-negative strains of bacteria, as well as for hERG activity and five compounds were tested for in vivo efficacy in murine model of Staphylococcus aureus infection. These studies suggest that only a narrow range (activating and deactivating) of substitutions at C-2 and C-7 are tolerated for optimal antibacterial activity and spectrum. An alkoxy (methoxy) and CN at C-2, and a halogen and hydroxyl at C-7, appeared to be preferred in this series. Substitutions on the other three carbons generally have detrimental effect on the activity. No clear hERG activity SAR emerged from these substitutions.
Assuntos
DNA Topoisomerases/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Inibidores da Topoisomerase/química , Inibidores da Topoisomerase/farmacologia , Animais , Camundongos , Estrutura Molecular , Infecções Estafilocócicas/microbiologia , Relação Estrutura-AtividadeRESUMO
Novel bacterial topoisomerase inhibitors (NBTIs) are a new class of broad-spectrum antibacterial agents targeting bacterial Gyrase A and ParC and have potential utility in combating antibiotic resistance. (R)-Hydroxy-1,5-naphthyridinone left-hand side (LHS) oxabicyclooctane linked pyridoxazinone right-hand side (RHS) containing NBTIs showed a potent Gram-positive antibacterial profile. SAR around the RHS moiety, including substitutions around pyridooxazinone, pyridodioxane, and phenyl propenoids has been described. A fluoro substituted pyridoxazinone showed an MIC against Staphylococcus aureus of 0.5 µg/mL with reduced functional hERG activity (IC50 333 µM) and good in vivo efficacy [ED90 12 mg/kg, intravenous (iv) and 15 mg/kg, oral (p.o.)]. A pyridodioxane-containing NBTI showed a S. aureus MIC of 0.5 µg/mL, significantly improved hERG IC50 764 µM and strong efficacy of 11 mg/kg (iv) and 5 mg/kg (p.o.). A phenyl propenoid series of compounds showed potent antibacterial activity, but also showed potent hERG binding activity. Many of the compounds in the hydroxy-tricyclic series showed strong activity against Acinetobacter baumannii, but reduced activity against Escherichia coli and Pseudomonas aeruginosa. Bicyclic heterocycles appeared to be the best RHS moiety for the hydroxy-tricyclic oxabicyclooctane linked NBTIs.
Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Naftiridinas/química , Inibidores da Topoisomerase/química , Inibidores da Topoisomerase/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , DNA Girase/química , DNA Girase/metabolismo , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Oxazóis/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Inibidores da Topoisomerase/síntese químicaRESUMO
Novel bacterial topoisomerase inhibitors (NBTIs) represent a new class of broad-spectrum antibacterial agents targeting bacterial Gyrase A and ParC and have potential utility in combating antibiotic resistance. A series of novel oxabicyclooctane-linked NBTIs with new tricyclic-1,5-naphthyridinone left hand side moieties have been described. Compounds with a (R)-hydroxy-1,5-naphthyridinone moiety (7) showed potent antibacterial activity (e.g., Staphylococcus aureus MIC 0.25 µg/mL), acceptable Gram-positive and Gram-negative spectrum with rapidly bactericidal activity. The compound 7 showed intravenous and oral efficacy (ED50) at 3.2 and 27 mg/kg doses, respectively, in a murine model of bacteremia. Most importantly they showed significant attenuation of functional hERG activity (IC50 >170 µM). In general, lower logD attenuated hERG activity but also reduced Gram-negative activity. The co-crystal structure of a hydroxy-tricyclic NBTI bound to a DNA-gyrase complex exhibited a binding mode that show enantiomeric preference for R isomer and explains the activity and SAR. The discovery, synthesis, SAR and X-ray crystal structure of the left-hand-side tricyclic 1,5-naphthyridinone based oxabicyclooctane linked NBTIs are described.
Assuntos
Antibacterianos/farmacologia , Ciclo-Octanos/farmacologia , DNA Topoisomerases Tipo II/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Naftiridinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Ciclo-Octanos/síntese química , Ciclo-Octanos/química , Relação Dose-Resposta a Droga , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Positivas/enzimologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Naftiridinas/síntese química , Naftiridinas/química , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/químicaRESUMO
Colisporifungin (1), a cyclic depsilipopeptide structurally related to the aselacins, and cavinafungins A and B, two linear peptides, were isolated from liquid culture broths of the hitherto unstudied fungus Colispora cavincola using a Candida albicans whole-cell assay as well as a bioassay to detect compounds potentiating the antifungal activity of caspofungin. The structural elucidation, including the absolute configuration of the new molecules, was accomplished using a combination of spectroscopic and chemical techniques, including 1D and 2D NMR, HRMS, and Marfey's analysis. The cyclic peptide colisporifungin displayed a strong potentiation of the growth inhibitory effect of caspofungin against Aspergillus fumigatus and, to a lesser extent, against Candida albicans. The linear peptides displayed broad-spectrum antifungal activities inhibiting growth of Candida species (MIC values 0.5-4 µg/mL) as well as A. fumigatus with a prominent inhibition of 8 µg/mL.
Assuntos
Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Ascomicetos/química , Equinocandinas/isolamento & purificação , Equinocandinas/farmacologia , Lipopeptídeos/isolamento & purificação , Lipopeptídeos/farmacologia , Antifúngicos/química , Aspergillus fumigatus/efeitos dos fármacos , Candida/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Caspofungina , Equinocandinas/química , Lipopeptídeos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ressonância Magnética Nuclear BiomolecularRESUMO
The emergence of antibiotic-resistant strains of pathogenic bacteria is an increasing threat to global health that underscores an urgent need for an expanded antibacterial armamentarium. Gram-negative bacteria, such as Escherichia coli, have become increasingly important clinical pathogens with limited treatment options. This is due in part to their lipopolysaccharide (LPS) outer membrane components, which dually serve as endotoxins while also protecting Gram-negative bacteria from antibiotic entry. The LpxC enzyme catalyzes the committed step of LPS biosynthesis, making LpxC a promising target for new antibacterials. Here, we present the first structure of an LpxC enzyme in complex with the deacetylation reaction product, UDP-(3-O-(R-3-hydroxymyristoyl))-glucosamine. These studies provide valuable insight into recognition of substrates and products by LpxC and a platform for structure-guided drug discovery of broad spectrum Gram-negative antibiotics.
Assuntos
Amidoidrolases/química , Escherichia coli/enzimologia , Ácidos Mirísticos/química , Prótons , Uridina Difosfato N-Acetilglicosamina/análogos & derivados , Amidoidrolases/metabolismo , Cristalografia por Raios X , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/química , Ácidos Mirísticos/metabolismo , Estrutura Terciária de Proteína , Uridina Difosfato N-Acetilglicosamina/química , Uridina Difosfato N-Acetilglicosamina/metabolismoRESUMO
Covering: 1985 to 2001.This paper describes a fifteen year journey from concept to clinical discovery and development of the first in class caspofungin acetate (CANCIDAS®) a parenteral antifungal agent. Caspofungin is a semisynthetic derivative of pneumocandin B0, a naturally occurring, lipophilic cyclic peptide isolated from the fungus, Glarea lozoyensis. While the echinocandins had been previously studied for antifungal activity by several organizations, the class was dropped for a variety of reasons. Merck subsequently initiated a research program leading to the discovery and development of caspofungin. The multitude of challenges that ensued during the discovery and development process and which were successfully resolved by multi-disciplinary teams constitute the content of this article. The article consists of five sections that describe the discovery and development of caspofungin in chronological order: (i) discovery of the natural product pneumocandin B0 from fungal fermentations, (ii) fermentation development to improve the titer of pneumocandin B0 to make it commercially viable, (iii) semisynthetic modification by medicinal chemistry to successfully improve the properties of pneumocandin B0 leading to the discovery of caspofungin, (iv) development of commercial semisynthesis and purification and formulation development to improve stability and (v) clinical development and approval of CANCIDAS® as an antifungal drug which subsequently saved thousands of lives.
Assuntos
Antifúngicos/farmacologia , Ascomicetos/química , Equinocandinas/farmacologia , Peptídeos Cíclicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Caspofungina , Descoberta de Drogas , Equinocandinas/química , Equinocandinas/isolamento & purificação , Humanos , Lipopeptídeos , Estrutura Molecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificaçãoRESUMO
Clostridium difficile is the causative agent of C. difficile-associated diarrhea (CDAD), with increased risk in elderly populations. Kibdelomycin, a novel natural-product inhibitor of type II topoisomerase enzymes, was evaluated for activity against C. difficile and gastrointestinal anaerobic organisms. Toxigenic C. difficile isolates (n=168) from U.S. hospitals and anaerobic Gram-positive and Gram-negative organisms (n=598) from Chicago-area hospitals were tested. Kibdelomycin showed potent activity against toxigenic C. difficile (MIC90=0.25 µg/ml) and most Gram-positive aerobic organisms but had little activity against Bacteroides species (MIC50>32 µg/ml; n=270). Potent anti-C. difficile activity was also observed in the hamster model of C. difficile colitis. Dosing at 1.6 mg/kg (twice-daily oral dose) resulted in protection from a lethal infection and a 2-log reduction in C. difficile cecal counts. A 6.25-mg/kg twice-daily oral dose completely eliminated detectable C. difficile counts in cecal contents. A single 6.25-mg/kg oral dose showed that cecal contents were exposed to the drug at >2 µM (eightfold higher than the MIC), with no significant plasma exposure. These findings support further exploration of kibdelomycin for development of an anti-C. difficile agent.
Assuntos
Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/tratamento farmacológico , Animais , Antibacterianos/farmacocinética , Cricetinae , Masculino , Camundongos , Testes de Sensibilidade MicrobianaRESUMO
A dramatic "ortho effect" was observed during gas-phase dissociation of ortho-, meta-, and para-methoxybenzoate anions. Upon activation under mass spectrometric collisional activation conditions, anions generated from all three isomers undergo a CO2 loss. Of the m/z 107 ions generated in this way, only the 1-dehydro-2-methoxybenzene anion from the ortho isomer underwent an exclusive formaldehyde loss. A peak for a formaldehyde loss in the spectra of 2,4-, 2,5-, and 2,6-dimethoxybenzoates and the absence of an analogous peak from 3,4- and 3,5-dimethoxy derivatives confirmed that this is a diagnostically useful ortho-isomer-specific phenomenon. Moreover, the spectrum from 2,3-dimethoxybenzoic acid showed peaks for two consecutive formaldehyde losses. The 1-dehydro-2,3,4-trimethoxybenzene anion (m/z 167) generated from 2,3,4-trimethoxybenzoate in this way endures three consecutive eliminations of formaldehyde units. For this, the negative charge, initially located on position 1, circumambulates to position 2, then to position 3, and finally to position 4 to form the final phenyl anion. The proposed stepwise fragmentation pathway, which resembles the well-known E1cB-elimination mechanism, is supported by tandem mass spectrometric observations made with 2-[(13)C(2)H3]methoxy-3-[(13)C]methoxy-4-methoxybenzoic acid, and ab initio calculations. In addition, the spectra of ions such as 1-dehydro-3,4-dimethoxybenzene anion show peaks for consecutive methyl radical losses, a feature that establishes the 1,2-relationship between the two methoxy groups.