Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13560, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866905

RESUMO

L1CAM-positive extracellular vesicles (L1EV) are an emerging biomarker that may better reflect ongoing neuronal damage than other blood-based biomarkers. The physiological roles and regulation of L1EVs and their small RNA cargoes following stroke is unknown. We sought to characterize L1EV small RNAs following stroke and assess L1EV RNA signatures for diagnosing stroke using weighted gene co-expression network analysis and random forest (RF) machine learning algorithms. Interestingly, small RNA sequencing of plasma L1EVs from patients with stroke and control patients (n = 28) identified micro(mi)RNAs known to be enriched in the brain. Weighted gene co-expression network analysis (WGCNA) revealed small RNA transcript modules correlated to diagnosis, initial NIH stroke scale, and age. L1EV RNA signatures associated with the diagnosis of AIS were derived from WGCNA and RF classification. These small RNA signatures demonstrated a high degree of accuracy in the diagnosis of AIS with an area under the curve (AUC) of the signatures ranging from 0.833 to 0.932. Further work is necessary to understand the role of small RNA L1EV cargoes in the response to brain injury, however, this study supports the utility of L1EV small RNA signatures as a biomarker of stroke.


Assuntos
Biomarcadores , Vesículas Extracelulares , AVC Isquêmico , Molécula L1 de Adesão de Célula Nervosa , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Masculino , AVC Isquêmico/genética , AVC Isquêmico/metabolismo , AVC Isquêmico/sangue , AVC Isquêmico/diagnóstico , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Feminino , Idoso , Biomarcadores/sangue , Pessoa de Meia-Idade , Aprendizado de Máquina , MicroRNAs/genética , MicroRNAs/sangue , MicroRNAs/metabolismo
2.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38464138

RESUMO

Mortality rate increases with age and can accelerate upon extrinsic or intrinsic damage to individuals. Identifying factors and mechanisms that curb population mortality rate has wide-ranging implications. Here, we show that targeting the VHL-1 (Von Hippel-Lindau) protein suppresses C. elegans mortality caused by distinct factors, including elevated reactive oxygen species, temperature, and APOE4, the genetic variant that confers high risks of neurodegeneration in Alzheimer's diseases and all-cause mortality in humans. These mortality factors are of different physical-chemical nature, yet result in similar cellular dysfunction and damage that are suppressed by deleting VHL-1. Stabilized HIF-1 (hypoxia inducible factor), a transcription factor normally targeted for degradation by VHL-1, recapitulates the protective effects of deleting VHL-1. HIF-1 orchestrates a genetic program that defends against mitochondrial abnormalities, excess oxidative stress, cellular proteostasis dysregulation, and endo-lysosomal rupture, key events that lead to mortality. Genetic Vhl inhibition also alleviates cerebral vascular injury and synaptic lesions in APOE4 mice, supporting an evolutionarily conserved mechanism. Collectively, we identify the VHL-HIF axis as a potent modifier of APOE4 and mortality and propose that targeting VHL-HIF in non-proliferative animal tissues may suppress tissue injuries and mortality by broadly curbing cellular damage.

3.
Clin Transl Med ; 14(4): e1650, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38649772

RESUMO

BACKGROUND: Although many molecules have been investigated as biomarkers for spinal cord injury (SCI) or ischemic stroke, none of them are specifically induced in central nervous system (CNS) neurons following injuries with low baseline expression. However, neuronal injury constitutes a major pathology associated with SCI or stroke and strongly correlates with neurological outcomes. Biomarkers characterized by low baseline expression and specific induction in neurons post-injury are likely to better correlate with injury severity and recovery, demonstrating higher sensitivity and specificity for CNS injuries compared to non-neuronal markers or pan-neuronal markers with constitutive expressions. METHODS: In animal studies, young adult wildtype and global Atf3 knockout mice underwent unilateral cervical 5 (C5) SCI or permanent distal middle cerebral artery occlusion (pMCAO). Gene expression was assessed using RNA-sequencing and qRT-PCR, while protein expression was detected through immunostaining. Serum ATF3 levels in animal models and clinical human samples were measured using commercially available enzyme-linked immune-sorbent assay (ELISA) kits. RESULTS: Activating transcription factor 3 (ATF3), a molecular marker for injured dorsal root ganglion sensory neurons in the peripheral nervous system, was not expressed in spinal cord or cortex of naïve mice but was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Additionally, ATF3 protein levels in mouse blood significantly increased 1 day after SCI or ischemic stroke. Importantly, ATF3 protein levels in human serum were elevated in clinical patients within 24 hours after SCI or ischemic stroke. Moreover, Atf3 knockout mice, compared to the wildtype mice, exhibited worse neurological outcomes and larger damage regions after SCI or ischemic stroke, indicating that ATF3 has a neuroprotective function. CONCLUSIONS: ATF3 is an easily measurable, neuron-specific biomarker for clinical SCI and ischemic stroke, with neuroprotective properties. HIGHLIGHTS: ATF3 was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Serum ATF3 protein levels are elevated in clinical patients within 24 hours after SCI or ischemic stroke. ATF3 exhibits neuroprotective properties, as evidenced by the worse neurological outcomes and larger damage regions observed in Atf3 knockout mice compared to wildtype mice following SCI or ischemic stroke.


Assuntos
Fator 3 Ativador da Transcrição , Biomarcadores , AVC Isquêmico , Neurônios , Traumatismos da Medula Espinal , Animais , Feminino , Humanos , Masculino , Camundongos , Fator 3 Ativador da Transcrição/metabolismo , Fator 3 Ativador da Transcrição/genética , Biomarcadores/metabolismo , Biomarcadores/sangue , Modelos Animais de Doenças , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , AVC Isquêmico/sangue , Camundongos Knockout , Neurônios/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA