Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
PLoS Genet ; 17(3): e1009483, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33784295

RESUMO

Conventionally viewed as male hormone, androgens play a critical role in female fertility. Although androgen receptors (AR) are transcription factors, to date very few direct transcriptional targets of ARs have been identified in the ovary. Using mouse models, this study provides three critical insights about androgen-induced gene regulation in the ovary and its impact on female fertility. First, RNA-sequencing reveals a number of genes and biological processes that were previously not known to be directly regulated by androgens in the ovary. Second, androgens can also influence gene expression by decreasing the tri-methyl mark on lysine 27 of histone3 (H3K27me3), a gene silencing epigenetic mark. ChIP-seq analyses highlight that androgen-induced modulation of H3K27me3 mark within gene bodies, promoters or distal enhancers have a much broader impact on ovarian function than the direct genomic effects of androgens. Third, androgen-induced decrease of H3K27me3 is mediated through (a) inhibiting the expression and activity of Enhancer of Zeste Homologue 2 (EZH2), a histone methyltransferase that promotes tri-methylation of K27 and (b) by inducing the expression of a histone demethylase called Jumonji domain containing protein-3 (JMJD3/KDM6B), responsible for removing the H3K27me3 mark. Androgens through the PI3K/Akt pathway, in a transcription-independent fashion, increase hypoxia-inducible factor 1 alpha (HIF1α) protein levels, which in turn induce JMJD3 expression. Furthermore, proof of concept studies involving in vivo knockdown of Ar in the ovary and ovarian (granulosa) cell-specific Ar knockout mouse model show that ARs regulate the expression of key ovarian genes through modulation of H3K27me3.


Assuntos
Androgênios/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Ovário/metabolismo , Androgênios/farmacologia , Animais , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Camundongos , Ovário/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt , Transcriptoma
2.
Biol Reprod ; 107(3): 813-822, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35657015

RESUMO

The anti-Müllerian hormone (AMH) produced by the granulosa cells of growing follicles is critical for folliculogenesis and is clinically used as a diagnostic and prognostic marker of female fertility. Previous studies report that AMH-pretreatment in mice creates a pool of quiescent follicles that are released following superovulation, resulting in an increased number of ovulated oocytes. However, the quality and developmental competency of oocytes derived from AMH-induced accumulated follicles as well as the effect of AMH treatment on live birth are not known. This study reports that AMH priming positively affects oocyte maturation and early embryonic development culminating in higher number of live births. Our results show that AMH treatment results in good-quality oocytes with greater developmental competence that enhances embryonic development resulting in blastocysts with higher gene expression. The transcriptomic analysis of oocytes from AMH-primed mice compared with those of control mice reveal that AMH upregulates a large number of genes and pathways associated with oocyte quality and embryonic development. Mitochondrial function is the most affected pathway by AMH priming, which is supported by more abundant active mitochondria, mitochondrial DNA content and adenosine triphosphate levels in oocytes and embryos isolated from AMH-primed animals compared with control animals. These studies for the first time provide an insight into the overall impact of AMH on female fertility and highlight the critical knowledge necessary to develop AMH as a therapeutic option to improve female fertility.


Assuntos
Hormônio Antimülleriano , Coeficiente de Natalidade , Animais , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Desenvolvimento Embrionário , Feminino , Nascido Vivo , Camundongos , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Gravidez
3.
Biol Reprod ; 102(5): 1045-1054, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31930385

RESUMO

Maternal perturbations or sub-optimal conditions during fetal development can predispose the offspring to diseases in adult life. Animal and human studies show that prenatal androgen excess may be an underlying cause of polycystic ovary syndrome (PCOS) later in life. In women, PCOS is a common fertility disorder with comorbid metabolic dysfunction. Here, using a sheep model of PCOS phenotype, we elucidate the epigenetic changes induced by prenatal (30-90 day) testosterone (T) treatment and its effect on gene expression in fetal day 90 (D90) and adult year 2 (Y2) ovaries. RNA-seq study shows 65 and 99 differentially regulated genes in prenatal T-treated fetal and adult ovaries, respectively. Interestingly, there were no differences in gene inducing histone marks H3K27ac, H3K9ac, and H3K4me3 or in gene silencing marks, H3K27me3 and H3K9me3 in the fetal D90 ovaries of control and excess T-exposed fetuses. In contrast, except for H3K4me3 and H3K27me3, all the other histone marks were upregulated in the prenatal T-treated adult Y2 ovary. Chromatin immunoprecipitation (ChIP) studies in adult Y2 ovaries established a direct relationship between the epigenetic modifications with the upregulated and downregulated genes obtained from RNA-seq. Results show increased gene inducing marks, H3K27ac and H3K9ac, on the promoter region of upregulated genes while gene silencing mark, H3K9me3, was also significantly increased on the downregulated genes. This study provides a mechanistic insight into prenatal T-induced developmental programming and its effect on ovarian gene expression that may contribute to reproductive dysfunction and development of PCOS in adult life.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/fisiologia , Ovinos/fisiologia , Testosterona/farmacologia , Animais , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ovinos/embriologia
4.
Pharmacol Res ; 144: 8-18, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30951812

RESUMO

Plant lectins are non-immunoglobin in nature and bind to the carbohydrate moiety of the glycoconjugates without altering any of the recognized glycosyl ligands. Plant lectins have found applications as cancer biomarkers for recognizing the malignant tumor cells for the diagnosis and prognosis of cancer. Interestingly, plant lectins contribute to inducing cell death through autophagy and apoptosis, indicating their potential implication in cancer inhibitory mechanism. In the present review, anticancer activities of major plant lectins have been documented, with a detailed focus on the signaling circuit for the possible molecular targeted cancer therapy. In this context, several lectins have exhibited preclinical and clinical significance, driving toward therapeutic potential in cancer treatment. Moreover, several plant lectins induce immunomodulatory activities, and therefore, novel strategies have been established from preclinical and clinical investigations for the development of combinatorial treatment consisting of immunotherapy along with other anticancer therapies. Although the application of plant lectins in cancer is still in very preliminary stage, advanced high-throughput technology could pave the way for the development of lectin-based complimentary medicine for cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Lectinas de Plantas/uso terapêutico , Animais , Antineoplásicos Fitogênicos/farmacologia , Humanos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Neoplasias/imunologia , Neoplasias/patologia , Lectinas de Plantas/farmacologia
5.
Semin Cell Dev Biol ; 39: 43-55, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25724561

RESUMO

Autophagy in cancer is an intensely debated concept in the field of translational research. The dual nature of autophagy implies that it can potentially modulate the pro-survival and pro-death mechanisms in tumor initiation and progression. There is a prospective molecular relationship between defective autophagy and tumorigenesis that involves the accumulation of damaged mitochondria and protein aggregates, which leads to the production of reactive oxygen species (ROS) and ultimately causes DNA damage that can lead to genomic instability. Moreover, autophagy regulates necrosis and is followed by inflammation, which limits tumor metastasis. On the other hand, autophagy provides a survival advantage to detached, dormant metastatic cells through nutrient fueling by tumor-associated stromal cells. Manipulating autophagy for induction of cell death, inhibition of protective autophagy at tissue-and context-dependent for apoptosis modulation has therapeutic implications. This review presents a comprehensive overview of the present state of knowledge regarding autophagy as a new approach to treat cancer.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Animais , Autofagia , Carcinogênese , Resistencia a Medicamentos Antineoplásicos , Humanos , Estresse Oxidativo , Transdução de Sinais
6.
Mol Carcinog ; 56(11): 2400-2413, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28543759

RESUMO

Oral cancer, a type of head and neck cancer, is ranked as one of the top most malignancies in India. Herein, we evaluated the anticancer efficacy of Abrus agglutinin (AGG), a plant lectin, in oral squamous cell carcinoma. AGG selectively inhibited cell growth, and caused cell cycle arrest and mitochondrial apoptosis through a reactive oxygen species (ROS)-mediated ATM-p73 dependent pathway in FaDu cells. AGG-induced ROS accumulation was identified as the major mechanism regulating apoptosis, DNA damage and DNA-damage response, which were significantly reversed by ROS scavenger N-acetylcysteine (NAC). Moreover, AGG was found to interact with mitochondrial manganese-dependent superoxide dismutase that might inhibit its activity and increase ROS in FaDu cells. In oral cancer p53 is mutated, thus we focused on p73; AGG resulted in p73 upregulation and knock down of p73 caused a decrease in AGG-induced apoptosis. Interestingly, AGG-dependent p73 expression was found to be regulated by ROS, which was reversed by NAC treatment. A reduction in the level of p73 in AGG-treated shATM cells was found to be associated with a decreased apoptosis. Moreover, administration of AGG (50 µg/kg body weight) significantly inhibited the growth of FaDu xenografts in athymic nude mice. In immunohistochemical analysis, the xenografts from AGG-treated mice displayed a decrease in PCNA expression and an increase in caspase-3 activation as compared to the controls. In conclusion, we established a connection among ROS, ATM and p73 in AGG-induced apoptosis, which might be useful in enhancing the therapeutic targeting of p53 deficient oral squamous cell carcinoma.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Lectinas de Plantas/uso terapêutico , Proteína Tumoral p73/metabolismo , Abrus/química , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Modelos Moleculares , Boca/efeitos dos fármacos , Boca/metabolismo , Boca/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
7.
Mol Carcinog ; 56(2): 389-401, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27182794

RESUMO

Abrus agglutinin (AGG), a type II ribosome-inactivating protein has been found to induce mitochondrial apoptosis. In the present study, we documented that AGG-mediated Akt dephosphorylation led to ER stress resulting the induction of autophagy-dependent cell death through the canonical pathway in cervical cancer cells. Inhibition of autophagic death with 3-methyladenine (3-MA) and siRNA of Beclin-1 and ATG5 increased AGG-induced apoptosis. Further, inhibiting apoptosis by Z-DEVD-FMK and N-acetyl cysteine (NAC) increased autophagic cell death after AGG treatment, suggesting that AGG simultaneously induced autophagic and apoptotic death in HeLa cells. Additionally, it observed that AGG-induced autophagic cell death in Bax knock down (Bax-KD) and 5-FU resistant HeLa cells, confirming as an alternate cell killing pathway to apoptosis. At the molecular level, AGG-induced ER stress in PERK dependent pathway and inhibition of ER stress by salubrinal, eIF2α phosphatase inhibitor as well as siPERK reduced autophagic death in the presence of AGG. Further, our in silico and colocalization study showed that AGG interacted with pleckstrin homology (PH) domain of Akt to suppress its phosphorylation and consequent downstream mTOR dephosphorylation in HeLa cells. We showed that Akt overexpression could not augment GRP78 expression and reduced autophagic cell death by AGG as compared to pcDNA control, indicating Akt modulation was the upstream signal during AGG's ER stress mediated autophagic cell death. In conclusion, we established that AGG stimulated cell death by autophagy might be used as an alternative tumor suppressor mechanism in human cervical cancer. © 2016 Wiley Periodicals, Inc.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Lectinas de Plantas/farmacologia , Domínios de Homologia à Plecstrina/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 2/farmacologia , Abrus/química , Antineoplásicos/isolamento & purificação , Chaperona BiP do Retículo Endoplasmático , Feminino , Células HeLa , Humanos , Modelos Moleculares , Lectinas de Plantas/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Inativadoras de Ribossomos Tipo 2/isolamento & purificação , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , eIF-2 Quinase/metabolismo
8.
Tumour Biol ; 39(5): 1010428317701634, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28459216

RESUMO

The accumulating evidences show that Abrus agglutinin, a plant lectin, displays a broad range of anticancer activity including cancer-specific induction of apoptosis; however, the underlying molecular mechanism of Abrus agglutinin-induced oral cancer stem cell elimination remains elusive. Our data documented that Abrus agglutinin effectively downregulated the CD44+ expression with the increased CD44- population in different oral cancer cells. After 24-h Abrus agglutinin treatment, FaDu cells were quantified for orosphere formation in ultra-low attachment plates and data showed that Abrus agglutinin inhibited the number and size of orosphere in a dose-dependent manner in FaDu cells. Furthermore, Abrus agglutinin hindered the plasticity of FaDu orospheres as supported by reduced sphere formation and downregulated the self-renewal property via inhibition of Wnt-ß-catenin signaling pathway. Introduction of LiCl, a glycogen synthase kinase 3ß inhibitor, rescued the Abrus agglutinin-stimulated inhibition of ß-catenin and phosphorylated glycogen synthase kinase 3ß in FaDu cell-derived orospheres confirming importance of Wnt signaling in Abrus agglutinin-mediated inhibition of stemness. In this connection, our data showed that Abrus agglutinin restrained proliferation and induced apoptosis in FaDu-derived cancer stem cells in dose-dependent manner. Moreover, western blot data demonstrated that Abrus agglutinin increased the Bax/Bcl-2 ratio with activation of poly(adenosine diphosphate-ribose) polymerase and caspase-3 favoring apoptosis induction in orospheres. Abrus agglutinin induced reactive oxygen species accumulation in orospheres and pretreatment of N-acetyl cysteine, and a reactive oxygen species scavenger inhibited Abrus agglutinin-mediated caspase-3 activity and ß-catenin expression indicating reactive oxygen species as a principal regulator of Wnt signaling and apoptosis. In conclusion, Abrus agglutinin has a potential role as an integrative therapeutic approach for combating oral cancer through targeting self-renewability of orospheres via reactive oxygen species-mediated apoptosis.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Autorrenovação Celular/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Lectinas de Plantas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Receptores de Hialuronatos/genética , Cloreto de Lítio/administração & dosagem , Camundongos , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Lectinas de Plantas/química , Espécies Reativas de Oxigênio/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Toxicol Mech Methods ; 27(1): 1-17, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27919191

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) comprise the major class of cancer-causing chemicals and are ranked ninth among the chemical compounds threatening to humans. Moreover, interest in PAHs has been mainly due to their genotoxic, teratogenic, mutagenic and carcinogenic property. Polymorphism in cytochrome P450 (CYP450) and aryl hydrocarbon receptor (AhR) has the capacity to convert procarcinogens into carcinogens, which is an imperative factor contributing to individual susceptibility to cancer development. The carcinogenicity potential of PAHs is related to their ability to bind to DNA, thereby enhances DNA cross-linking, causing a series of disruptive effects which can result in tumor initiation. They induce cellular toxicity by regulating the generation of reactive oxygen species (ROS), which arbitrate apoptosis. Additionally, cellular toxicity-mediated apoptotic and autophagic cell death and immune suppression by industrial pollutants PAH, provide fertile ground for the proliferation of mutated cells, which results in cancer growth and progression. PAHs play a foremost role in angiogenesis necessary for tumor metastasization by promoting the upregulation of metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF) and hypoxia inducible factor (HIF) in human cancer cells. This review sheds light on the molecular mechanisms of PAHs induced cancer development as well as autophagic and apoptotic cell death. Besides that authors have unraveled how phytotherapeutics is an alternate potential therapeutics acting as a savior from the toxic effects of PAHs for safer and cost effective perspectives.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinógenos/toxicidade , Neoplasias/induzido quimicamente , Fitoterapia/métodos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Carcinogênese , Inibidores das Enzimas do Citocromo P-450/uso terapêutico , Sistema Enzimático do Citocromo P-450/biossíntese , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Preparações de Plantas/uso terapêutico , Receptores de Hidrocarboneto Arílico/metabolismo
10.
Crit Rev Clin Lab Sci ; 53(4): 228-52, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26743568

RESUMO

Oncophagy (cancer-related autophagy) has a complex dual character at different stages of tumor progression. It remains an important clinical problem to unravel the reasons that propel the shift in the role of oncophagy from tumor inhibition to a protective mechanism that shields full-blown malignancy. Most treatment strategies emphasize curbing protective oncophagy while triggering the oncophagy that is lethal to tumor cells. In this review, we focus on the trends in current therapeutics as well as various challenges in clinical trials to address the oncophagic dilemma and evaluate the potential of these developing therapies. A detailed analysis of the clinical and pre-clinical scenario of the anticancer medicines highlights the various inducers and inhibitors of autophagy. The ways in which tumor stage, the microenvironment and combination drug treatment continue to play an important tactical role are discussed. Moreover, autophagy targets also play a crucial role in developing the best possible solution to this oncophagy paradox. In this review, we provide a comprehensive update on the current clinical impact of autophagy-based cancer therapeutic drugs and try to lessen the gap between translational medicine and clinical science.


Assuntos
Autofagia , Neoplasias , Animais , Apoptose , Ensaios Clínicos como Assunto , Humanos , Camundongos , Neoplasias/fisiopatologia , Neoplasias/terapia
11.
Int J Cancer ; 139(2): 457-66, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26914517

RESUMO

Abrus agglutinin (AGG), a plant lectin isolated from the seeds of Abrus precatorius, has documented antitumor and immunostimulatory effects in murine models. To examine possible antitumor activity against breast cancer, we established human breast tumor xenografts in athymic nude mice and intraperitoneally administered AGG. AGG inhibited tumor growth and angiogenesis as confirmed by monitoring the expression of Ki-67 and CD-31, respectively. In addition, TUNEL positive cells increased in breast tumors treated with AGG suggesting that AGG mediates anti-tumorigenic activity through induction of apoptosis and inhibition of angiogenesis. On a molecular level, AGG caused extrinsic apoptosis through ROS generation that was AKT-dependent in breast cancer cells, without affecting primary mammary epithelial cells, suggesting potential cancer specificity of this natural compound. In addition, using HUVECs, AGG inhibited expression of the pro-angiogenic factor IGFBP-2 in an AKT-dependent manner, reducing angiogenic phenotypes both in vitro and in vivo. Overall, the present results establish that AGG promotes both apoptosis and anti-angiogenic activities in human breast tumor cells, which might be exploited for treatment of breast and other cancers.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Lectinas de Plantas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Camundongos , Neovascularização Patológica/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Biochem Biophys Res Commun ; 479(4): 940-946, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27693792

RESUMO

Mitophagy is a highly specialised type of autophagy that plays an important role in regulating mitochondrial dynamics and controls cellular quality during stress. In this study, we established that serum starvation led to induction of cellular inhibitor of apoptosis protein-1 (cIAP1), which regulates mitophagy through ubiquitination. Importantly, gain and loss of function of cIAP1 resulted in concomitant alteration in mitophagy confirming the direct implication of cIAP1 in induction of mitophagy. Interestingly, it was observed that cIAP1 translocated to mitochondria to associate with TOM20, Ulk1, and LC3 to initiate mitophagy. Further, cIAP1-induced mitophagy led to dysfunctional mitochondria that resulted in abrogation of mitochondrial oxygen consumption rate along with the decrease in ATP levels. The ubiquitination of cIAP1 was found to be the critical regulator of mitophagy. The disruption of cIAP1-ubiquitin interaction by PYR41 ensured the abrogation of cIAP1-LC3 interaction and mitophagy inhibition. Our study revealed an important function of cIAP1 as a crucial molecular link between autophagy and apoptosis for regulation of mitochondrial dynamics to mitigate cellular stress.


Assuntos
Proteínas Inibidoras de Apoptose/metabolismo , Mitofagia/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Trifosfato de Adenosina/metabolismo , Apoptose/fisiologia , Transporte Biológico Ativo , Meios de Cultura Livres de Soro , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Dinâmica Mitocondrial/fisiologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Consumo de Oxigênio , Receptores de Superfície Celular/metabolismo , Estresse Fisiológico , Ubiquitinação
13.
Phytother Res ; 30(11): 1794-1801, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27432245

RESUMO

Benzo[a]pyrene (B[a]P) is capable of inducing oxidative stress and cellular injuries leading to cell death and associates with a significant risk of cancer development. Prevention of B[a]P-induced cellular toxicity with herbal compound through regulation of mitochondrial oxidative stress might protect cell death and have therapeutic benefit to human health. In this study, we demonstrated the cytoprotective role of Bacopa monnieri (BM) against B[a]P-induced apoptosis through autophagy induction. Pretreatment with BM rescued the reduction in cell viability in B[a]P-treated human keratinocytes (HaCaT) cells indicating the cytoprotective potential of BM against B[a]P. Moreover, BM was found to inhibit B[a]P-mediated reactive oxygen species (ROS)-induced apoptosis activation in HaCaT cells. Furthermore, BM was found to preserve mitochondrial membrane potential and inhibited release of cytochrome c in B[a]P-treated HaCaT cells. Bacopa monnieri induced protective autophagy; we knocked down Beclin-1, and data showed that BM was unable to protect from B[a]P-induced mitochondrial ROS-mediated apoptosis in Beclin-1-deficient HaCaT cells. Moreover, we established that B[a]P-induced damaged mitochondria were found to colocalize and degraded within autolysosomes in order to protect HaCaT cells from mitochondrial injury. In conclusion, B[a]P-induced apoptosis was rescued by BM treatment and provided cytoprotection through Beclin-1-dependent autophagy activation. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Bacopa/química , Benzo(a)pireno/química , Extratos Vegetais/química , Humanos , Estresse Oxidativo , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio
14.
Analyst ; 140(4): 1221-8, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25537483

RESUMO

A nitrogen and sulphur co-doped carbon dot (NSCD) based highly selective photoluminescent probe for mercury detection has been designed. The NSCDs with a PL quantum yield of 69% are easily prepared from a single polymeric molecular precursor. The turn on-off fluorescence change upon mercury addition is attributed to the nonradiative electron transfer from the excited state to the d-orbital of the metal ion. The soft-soft acid-base interaction between the sulphur part of the NSCD and Hg(2+) makes the fluorescence probe more specific and selective towards Hg(2+) in contrast to other metal ions. The limit of detection of mercury ions is found to be 0.05 nM. Due to their high photostability, low toxicity and low detection limit, these carbon dots are demonstrated to be excellent probes for the detection of Hg(2+) in the living cell.


Assuntos
Carbono/química , Corantes Fluorescentes/química , Mercúrio/análise , Imagem Óptica , Pontos Quânticos/química , Espectrometria de Fluorescência , Poluentes Químicos da Água/análise , Cátions Bivalentes/análise , Linhagem Celular , Sobrevivência Celular , Monitoramento Ambiental/métodos , Corantes Fluorescentes/síntese química , Humanos , Limite de Detecção , Nitrogênio/química , Imagem Óptica/métodos , Espectrometria de Fluorescência/métodos , Enxofre/química
15.
Apoptosis ; 19(4): 555-66, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24415198

RESUMO

Autophagy and apoptosis are two important cellular processes with complex and intersecting protein networks; as such, they have been the subjects of intense investigation. Recent advances have elucidated the key players and their molecular circuitry. For instance, the discovery of Beclin-1's interacting partners has resulted in the identification of Bcl-2 as a central regulator of autophagy and apoptosis, which functions by interacting with both Beclin-1 and Bax/Bak respectively. When localized to the endoplasmic reticulum and mitochondria, Bcl-2 inhibits autophagy. Cellular stress causes the displacement of Bcl-2 from Beclin-1 and Bax, thereby triggering autophagy and apoptosis, respectively. The induction of autophagy or apoptosis results in disruption of complexes by BH3-only proteins and through post-translational modification. The mechanisms linking autophagy and apoptosis are not fully defined; however, recent discoveries have revealed that several apoptotic proteins (e.g., PUMA, Noxa, Nix, Bax, XIAP, and Bim) modulate autophagy. Moreover, autophagic proteins that control nucleation and elongation regulate intrinsic apoptosis through calpain- and caspase-mediated cleavage of autophagy-related proteins, which switches the cellular program from autophagy to apoptosis. Similarly, several autophagic proteins are implicated in extrinsic apoptosis. This highlights a dual cellular role for autophagy. On one hand, autophagy degrades damaged mitochondria and caspases, and on the other hand, it provides a membrane-based intracellular platform for caspase processing in the regulation of apoptosis. In this review, we highlight the crucial factors governing the crosstalk between autophagy and apoptosis and describe the mechanisms controlling cell survival and cell death.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Autofagia/fisiologia , Animais , Proteínas Reguladoras de Apoptose/genética , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais
16.
Acta Pharmacol Sin ; 35(6): 814-24, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24793310

RESUMO

AIM: Abrus agglutinin (AGG) from the seeds of Indian medicinal plant Abrus precatorius belongs to the class II ribosome inactivating protein family. In this study we investigated the anticancer effects of AGG against human hepatocellular carcinoma in vitro and in vivo. METHODS: Cell proliferation, DNA fragmentation, Annexin V binding, immunocytofluorescence, Western blotting, caspase activity assays and luciferase assays were performed to evaluate AGG in human liver cancer cells HepG2. Immunohistochemical staining and TUNEL expression were studied in tumor samples of HepG2-xenografted nude mice. RESULTS: AGG induced apoptosis in HepG2 cells in a dose- and time-dependent manner. AGG-treated HepG2 cells demonstrated an increase in caspase 3/7, 8 and 9 activities and a sharp decrease in the Bcl-2/Bax ratio, indicating activation of a caspase cascade. Co-treatment of HepG2 cells with AGG and a caspase inhibitor or treatment of AGG in Bax knockout HepG2 cells decreased the caspase 3/7 activity in comparison to HepG2 cells exposed only to AGG. Moreover, AGG decreased the expression of Hsp90 and suppressed Akt phosphorylation and NF-κB expression in HepG2 cells. Finally, AGG treatment significantly reduced tumor growth in nude mice bearing HepG2 xenografts, increased TUNEL expression and decreased CD-31 and Ki-67 expression compared to levels observed in the untreated control mice bearing HepG2 cells. CONCLUSION: AGG inhibits the growth and progression of HepG2 cells by inducing caspase-mediated cell death. The agglutinin could be an alternative natural remedy for the treatment of human hepatocellular carcinomas.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Lectinas de Plantas/uso terapêutico , Abrus/química , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos Nus , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia
17.
Cells ; 12(2)2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672152

RESUMO

Osteoporosis is a systemic skeletal disease characterised by low bone mineral density (BMD), degeneration of bone micro-architecture, and impaired bone strength. Cissus quadrangularis (CQ), popularly known as Hadjod (bone setter) in Hindi, is a traditional medicinal herb exhibiting osteoprotective potential in various bone diseases, especially osteoporosis and fractures. However, the cellular mechanisms underpinning its direct effect on bone health through altering the host immune system have never been elucidated. In the present study, we interrogated the osteoprotective and immunoporotic (the osteoprotective potential of CQ via modulating the host immune system) potential of CQ in preventing inflammatory bone loss under oestrogen-deficient conditions. The current study outlines the CQ's osteoprotective potential under both ex vivo and in vivo (ovariectomized) conditions. Our ex vivo data demonstrated that, in a dose-dependent manner CQ, suppresses the RANKL-induced osteoclastogenesis (p < 0.001) as well as inhibiting the osteoclast functional activity (p < 0.001) in mouse bone marrow cells (BMCs). Our in vivo µ-CT and flow cytometry data further showed that CQ administration improves bone health and preserves bone micro-architecture by markedly raising the proportion of anti-osteoclastogenic immune cells, such as Th1 (p < 0.05), Th2 (p < 0.05), Tregs (p < 0.05), and Bregs (p < 0.01), while concurrently lowering the osteoclastogenic Th17 cells in bone marrow, mesenteric lymph nodes, Peyer's patches, and spleen in comparison to the control group. Serum cytokine analysis further supported the osteoprotective and immunoporotic potential of CQ, showing a significant increase in the levels of anti-osteoclastogenic cytokines (p < 0.05) (IFN-γ, IL-4, and IL-10) and a concurrent decrease in the levels of osteoclastogenic cytokines (p < 0.05) (TNF-α, IL-6, and IL-17). In conclusion, our data for the first time delineates the novel cellular and immunological mechanism of the osteoprotective potential of CQ under postmenopausal osteoporotic conditions.


Assuntos
Doenças Ósseas Metabólicas , Cissus , Osteoporose , Camundongos , Animais , Osteogênese , Densidade Óssea , Osteoporose/tratamento farmacológico , Estrogênios , Citocinas
18.
Endocrinology ; 163(5)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35396990

RESUMO

In females, reproductive success is dependent on the expression of a number of genes regulated at different levels, one of which is through epigenetic modulation. How a specific epigenetic modification regulates gene expression and their downstream effect on ovarian function are important for understanding the female reproductive process. The trimethylation of histone3 at lysine27 (H3K27me3) is associated with gene repression. JMJD3 (or KDM6b), a jumonji domain-containing histone demethylase specifically catalyzes the demethylation of H3K27me3, that positively influences gene expression. This study reports that the expression of JMJD3 specifically in the ovarian granulosa cells (GCs) is critical for maintaining normal female fertility. Conditional deletion of Jmjd3 in the GCs results in a decreased number of total healthy follicles, disrupted estrous cycle, and increased follicular atresia culminating in subfertility and premature ovarian failure. At the molecular level, the depletion of Jmjd3 and RNA-seq analysis reveal that JMJD3 is essential for mitochondrial function. JMJD3-mediated reduction of H3K27me3 induces the expression of Lif (Leukemia inhibitory factor) and Ctnnb1 (ß-catenin), that in turn regulate the expression of key mitochondrial genes critical for the electron transport chain. Moreover, mitochondrial DNA content is also significantly decreased in Jmjd3 null GCs. Additionally, we have uncovered that the expression of Jmjd3 in GCs decreases with age, both in mice and in humans. Thus, in summary, our studies highlight the critical role of JMJD3 in nuclear-mitochondrial genome coordination that is essential for maintaining normal ovarian function and female fertility and underscore a potential role of JMJD3 in female reproductive aging.


Assuntos
Atresia Folicular , Histonas , Histona Desmetilases com o Domínio Jumonji/metabolismo , Animais , Feminino , Fertilidade/genética , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Camundongos , Ovário/metabolismo
19.
Endocrinology ; 163(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35933634

RESUMO

In women, excess androgen causes polycystic ovary syndrome (PCOS), a common fertility disorder with comorbid metabolic dysfunctions including diabetes, obesity, and nonalcoholic fatty liver disease. Using a PCOS mouse model, this study shows that chronic high androgen levels cause hepatic steatosis while hepatocyte-specific androgen receptor (AR)-knockout rescues this phenotype. Moreover, through RNA-sequencing and metabolomic studies, we have identified key metabolic genes and pathways affected by hyperandrogenism. Our studies reveal that a large number of metabolic genes are directly regulated by androgens through AR binding to androgen response element sequences on the promoter region of these genes. Interestingly, a number of circadian genes are also differentially regulated by androgens. In vivo and in vitro studies using a circadian reporter [Period2::Luciferase (Per2::LUC)] mouse model demonstrate that androgens can directly disrupt the hepatic timing system, which is a key regulator of liver metabolism. Consequently, studies show that androgens decrease H3K27me3, a gene silencing mark on the promoter of core clock genes, by inhibiting the expression of histone methyltransferase, Ezh2, while inducing the expression of the histone demethylase, JMJD3, which is responsible for adding and removing the H3K27me3 mark, respectively. Finally, we report that under hyperandrogenic conditions, some of the same circadian/metabolic genes that are upregulated in the mouse liver are also elevated in nonhuman primate livers. In summary, these studies not only provide an overall understanding of how hyperandrogenism associated with PCOS affects liver gene expression and metabolism but also offer insight into the underlying mechanisms leading to hepatic steatosis in PCOS.


Assuntos
Hiperandrogenismo , Hepatopatia Gordurosa não Alcoólica , Síndrome do Ovário Policístico , Androgênios/metabolismo , Androgênios/farmacologia , Animais , Modelos Animais de Doenças , Epigênese Genética , Feminino , Histonas/metabolismo , Humanos , Hiperandrogenismo/complicações , Camundongos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Síndrome do Ovário Policístico/metabolismo
20.
J Endocrinol ; 249(3): R53-R64, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33764313

RESUMO

In recent years, androgens have emerged as critical regulators of female reproduction and women's health in general. While high levels of androgens in women are associated with polycystic ovary syndrome (PCOS), recent evidence suggests that a certain amount of direct androgen action through androgen receptor is also essential for normal ovarian function. Moreover, prenatal androgen exposure has been reported to cause developmental reprogramming of the fetus that manifests into adult pathologies, supporting the Developmental Origins of Health and Disease (DOHaD) hypothesis. Therefore, it has become imperative to understand the underlying mechanism of androgen actions and its downstream effects under normal and pathophysiological conditions. Over the years, there has been a lot of studies on androgen receptor function as a transcriptional regulator in the nucleus as well as androgen-induced rapid extra-nuclear signaling. Conversely, new evidence suggests that androgen actions may also be mediated through epigenetic modulation involving both the nuclear and extra-nuclear androgen signaling. This review focuses on androgen-induced epigenetic modifications in female reproduction, specifically in the ovary, and discusses emerging concepts, latest perceptions, and highlight the areas that need further investigation.


Assuntos
Androgênios/farmacologia , Epigênese Genética , Regulação da Expressão Gênica/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Feminino , Humanos , Infertilidade Feminina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA