Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 139(22): 5709-17, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25221792

RESUMO

Studying cell-to-cell heterogeneity requires techniques which robustly deliver reproducible results with single-cell sensitivity. Through a new fabrication method for the microarrays for mass spectrometry (MAMS) platform, we now have attained robustness and reproducibility in our single-cell level mass spectrometry measurements that allowed us to combine single-cell MAMS-based measurements from different days and samples. By combining multiple measurements, we were able to identify three co-existing phenotypes in an isogenic population of Saccharomyces cerevisiae characterized by distinctively different levels of glycolytic intermediates.


Assuntos
Saccharomyces cerevisiae/citologia , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
Biomed Microdevices ; 15(6): 997-1003, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23846247

RESUMO

This work presents the fabrication and controlled actuation of swimming microrobots made of a magnetic polymer composite (MPC) consisting of 11-nm-diameter magnetite (Fe3O4) nanoparticles and photocurable resin (SU-8). Two-photon polymerization (TPP) is used to fabricate the magnetic microstructures. The material properties and the cytotoxicity of the MPC with different nanoparticle concentrations are characterized. The live/dead staining tests indicate that MPC samples with varied concentrations, up to 10 vol.%, have negligible cytotoxicity after 24 h incubation. Fabrication parameters of MPC with up to 4 vol.% were investigated. We demonstrate that the helical microdevices made of 2 vol.% MPC were capable of performing corkscrew motion in water applying weak uniform rotating magnetic fields.


Assuntos
Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Teste de Materiais , Microtecnologia/métodos , Polimerização , Robótica , Sobrevivência Celular/efeitos dos fármacos , Compostos de Epóxi/química , Fótons , Polímeros/química
3.
Adv Mater ; 32(52): e2005652, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33191553

RESUMO

Sugars are ubiquitous in food, and are among the main sources of energy for almost all forms of life. Sugars can also form structural building blocks such as cellulose in plants. Because of their inherent degradability and biocompatibility characteristics, sugars are compelling materials for transient devices. Here, an additive manufacturing approach for the production of magnetic sugar-based composites is introduced. First, it is shown that sugar-based 3D architectures can be 3D printed by selective laser sintering. This method enables not only the caramelization chemistry but also the mechanical properties of the sugar architectures to be adjusted by varying the laser energy. It is also demonstrated that mixtures of sugar and magnetic particles can be processed as 3D composites. As a proof of concept, a sugar-based millimeter-scale helical swimmer, which is capable of corkscrew motion in a solution with a viscosity comparable to those of biological fluids, is fabricated. The millirobot quickly dissolves in water, while being manipulated through magnetic fields. The present fabrication method can pave the way to a new generation of transient sugar-based small-scale robots for minimally invasive procedures. Due to their rapid dissolution, sugars can be used as an intermediate step for transporting swarms of particles to specific target locations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA