Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Ecol ; 88(10): 1564-1574, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31264204

RESUMO

Coral reef food webs are complex, vary spatially and remain poorly understood. Certain large predators, notably sharks, are subsidized by pelagic production on outer reef slopes, but how widespread this dependence is across all teleost fishery target species and within atolls is unclear. North Malé Atoll (Maldives) includes oceanic barrier as well as lagoonal reefs. Nine fishery target predators constituting ca. 55% of the local fishery target species biomass at assumed trophic levels 3-5 were selected for analysis. Data were derived from carbon (δ13 C), nitrogen (δ15 N) and sulphur (δ34 S) stable isotopes from predator white dorsal muscle samples, and primary consumer species representing production source end-members. Three-source Bayesian stable isotope mixing models showed that uptake of pelagic production extends throughout the atoll, with predatory fishes showing equal planktonic reliance between inner and outer edge reefs. Median plankton contribution was 65%-80% for all groupers and 68%-88% for an emperor, a jack and snappers. Lagoonal and atoll edge predators are equally at risk from anthropogenic and climate-induced changes, which may impact the linkages they construct, highlighting the need for management plans that transcend the boundaries of this threatened ecosystem.


Assuntos
Recifes de Corais , Ecossistema , Animais , Teorema de Bayes , Peixes , Ilhas do Oceano Índico , Masculino , Oceanos e Mares , Prevalência
2.
J Fish Biol ; 94(4): 585-594, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30779136

RESUMO

The grazing behaviour of two Caribbean parrotfish, a fished species, the stoplight parrotfish Sparisoma viride and a non-fished species, the striped parrotfish Scarus iseri, were studied in the presence (fished site) and absence (marine reserve) of chronic spearfishing activity. Diurnal feeding periodicity did not differ between the sites in either species: roving individuals had significantly higher bite rates in the afternoon, while territorial individuals foraged consistently throughout the day. Mean bite rate varied between sites in both species. Abundance, biomass and bite rates of S. viride were all significantly higher within the reserve, except for roving S. viride which had a higher mean bite rate in the afternoon outside the reserve compared with within it, attributable to maximisation of feeding in the afternoon when fishing risk was lower. Scarus iseri mean abundance and bite rate were greater outside the reserve, potentially because reduction in large territorial herbivores allowed S. iseri to feed more rapidly. By reducing the grazing potential of the remaining S. viride individuals the effect of fishing is greater than would be predicted from biomass changes alone. Less grazing by S. viride would not be compensated for by the increase in grazing by S. iseri because the latter feeds on different algae. Spearfishing of key parrotfish species reduces grazing potential directly by extraction and indirectly by changing behaviour.


Assuntos
Comportamento Animal , Recifes de Corais , Peixes/fisiologia , Animais , Biomassa , Região do Caribe , Herbivoria , Densidade Demográfica , Territorialidade
3.
Proc Biol Sci ; 283(1836)2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27512146

RESUMO

Although many coral reefs have shifted from coral-to-algal dominance, the consequence of such a transition for coral-algal interactions and their underlying mechanisms remain poorly understood. At the microscale, it is unclear how diffusive boundary layers (DBLs) and surface oxygen concentrations at the coral-algal interface vary with algal competitors and competitiveness. Using field observations and microsensor measurements in a flow chamber, we show that coral (massive Porites) interfaces with thick turf algae, macroalgae, and cyanobacteria, which are successful competitors against coral in the field, are characterized by a thick DBL and hypoxia at night. In contrast, coral interfaces with crustose coralline algae, conspecifics, and thin turf algae, which are poorer competitors, have a thin DBL and low hypoxia at night. Furthermore, DBL thickness and hypoxia at the interface with turf decreased with increasing flow speed, but not when thick turf was upstream. Our results support the importance of water-mediated transport mechanisms in coral-algal interactions. Shifts towards algal dominance, particularly dense assemblages, may lead to thicker DBLs, higher hypoxia, and higher concentrations of harmful metabolites and pathogens along coral borders, which in turn may facilitate algal overgrowth of live corals. These effects may be mediated by flow speed and orientation.


Assuntos
Antozoários/fisiologia , Cianobactérias/fisiologia , Água do Mar/química , Alga Marinha/fisiologia , Animais , Recifes de Corais , Hipóxia
4.
Chemosphere ; 355: 141816, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556184

RESUMO

Over the last few decades, measurements of light stable isotope ratios have been increasingly used to answer questions across physiology, biology, ecology, and archaeology. The vast majority analyse carbon (δ13C) and nitrogen (δ15N) stable isotopes as the 'default' isotopes, omitting sulfur (δ34S) due to time, cost, or perceived lack of benefits and instrumentation capabilities. Using just carbon and nitrogen isotopic ratios can produce results that are inconclusive, uncertain, or in the worst cases, even misleading, especially for scientists that are new to the use and interpretation of stable isotope data. Using sulfur isotope values more regularly has the potential to mitigate these issues, especially given recent advancements that have lowered measurement barriers. Here we provide a review documenting case studies with real-world data, re-analysing different biological topics (i.e. niche, physiology, diet, movement and bioarchaeology) with and without sulfur isotopes to highlight the various strengths of this stable isotope for various applications. We also include a preliminary meta-analysis of the trophic discrimination factor (TDF) for sulfur isotopes, which suggest small (mean -0.4 ± 1.7 ‰ SD) but taxa-dependent mean trophic discrimination. Each case study demonstrates how the exclusion of sulfur comes at the detriment of the results, often leading to very different outputs, or missing valuable discoveries entirely. Given that studies relying on carbon and nitrogen stable isotopes currently underpin most of our understanding of various ecological processes, this has concerning implications. Collectively, these examples strongly suggest that researchers planning to use carbon and nitrogen stable isotopes for their research should incorporate sulfur where possible, and that the new 'default' isotope systems for aquatic science should now be carbon, nitrogen, and sulfur.


Assuntos
Carbono , Nitrogênio , Isótopos de Carbono , Isótopos de Nitrogênio , Isótopos de Enxofre
5.
Trends Ecol Evol ; 39(5): 467-478, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105132

RESUMO

The movement of energy and nutrients through ecological communities represents the biological 'pulse' underpinning ecosystem functioning and services. However, energy and nutrient fluxes are inherently difficult to observe, particularly in high-diversity systems such as coral reefs. We review advances in the quantification of fluxes in coral reef fishes, focusing on four key frameworks: demographic modelling, bioenergetics, micronutrients, and compound-specific stable isotope analysis (CSIA). Each framework can be integrated with underwater surveys, enabling researchers to scale organismal processes to ecosystem properties. This has revealed how small fish support biomass turnover, pelagic subsidies sustain fisheries, and fisheries benefit human health. Combining frameworks, closing data gaps, and expansion to other aquatic ecosystems can advance understanding of how fishes contribute to ecosystem functions and services.


Assuntos
Recifes de Corais , Peixes , Cadeia Alimentar , Nutrientes , Animais , Peixes/fisiologia , Nutrientes/metabolismo , Metabolismo Energético
6.
Ecol Evol ; 12(9): e9221, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36172294

RESUMO

Fish have one of the highest occurrences of individual specialization in trophic strategies among Eukaryotes. Yet, few studies characterize this variation during trophic niche analysis, limiting our understanding of aquatic food web dynamics. Stable isotope analysis (SIA) with advanced Bayesian statistics is one way to incorporate this individual trophic variation when quantifying niche size. However, studies using SIA to investigate trophodynamics have mostly focused on species- or guild-level (i.e., assumed similar trophic strategy) analyses in settings where source isotopes are well-resolved. These parameters are uncommon in an ecological context. Here, we use Stable Isotope Bayesian Ellipses in R (SIBER) to investigate cross-guild trophodynamics of 11 reef fish species within an oceanic atoll. We compared two- (δ 15N and δ 13C) versus three-dimensional (δ 15N, δ 13C, and δ 34S) reconstructions of isotopic niche space for interpreting guild-, species-, and individual-level trophic strategies. Reef fish isotope compositions varied significantly among, but also within, guilds. Individuals of the same species did not cluster together based on their isotope values, suggesting within-species specializations. Furthermore, while two-dimensional isotopic niches helped differentiate reef fish resource use, niche overlap among species was exceptionally high. The addition of δ 34S and the generation of three-dimensional isotopic niches were needed to further characterize their isotopic niches and better evaluate potential trophic strategies. These data suggest that δ 34S may reveal fluctuations in resource availability, which are not detectable using only δ 15N and δ 13C. We recommend that researchers include δ 34S in future aquatic food web studies.

7.
Mol Cell Biol ; 27(16): 5746-64, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17562867

RESUMO

The tuberous sclerosis complex (TSC) proteins TSC1 and TSC2 regulate protein translation by inhibiting the serine/threonine kinase mTORC1 (for mammalian target of rapamycin complex 1). However, how TSC1 and TSC2 control overall protein synthesis and the translation of specific mRNAs in response to different mitogenic and nutritional stimuli is largely unknown. We show here that serum withdrawal inhibits mTORC1 signaling, causes disassembly of translation initiation complexes, and causes mRNA redistribution from polysomes to subpolysomes in wild-type mouse embryo fibroblasts (MEFs). In contrast, these responses are defective in Tsc1(-/-) or Tsc2(-/-) MEFs. Microarray analysis of polysome- and subpolysome-associated mRNAs uncovered specific mRNAs that are translationally regulated by serum, 90% of which are TSC1 and TSC2 dependent. Surprisingly, the mTORC1 inhibitor, rapamycin, abolished mTORC1 activity but only affected approximately 40% of the serum-regulated mRNAs. Serum-dependent signaling through mTORC1 and polysome redistribution of global and individual mRNAs were restored upon re-expression of TSC1 and TSC2. Serum-responsive mRNAs that are sensitive to inhibition by rapamycin are highly enriched for terminal oligopyrimidine and for very short 5' and 3' untranslated regions. These data demonstrate that the TSC1/TSC2 complex regulates protein translation through mainly mTORC1-dependent mechanisms and implicates a discrete profile of deregulated mRNA translation in tuberous sclerosis pathology.


Assuntos
Biossíntese de Proteínas/genética , Sequência de Oligopirimidina na Região 5' Terminal do RNA/genética , Soro , Proteínas Supressoras de Tumor/metabolismo , Regiões 5' não Traduzidas/metabolismo , Animais , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Alimentos , Regulação da Expressão Gênica/efeitos dos fármacos , Substâncias de Crescimento/farmacologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Polirribossomos/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Fatores de Transcrição/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência
8.
Ecol Evol ; 9(23): 13267-13277, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31893024

RESUMO

Sympatric species may partition resources to reduce competition and facilitate co-existence. While spatial variation and specialization in feeding strategies may be prevalent among large marine predators, studies have focussed on sharks, birds, and marine mammals. We consider for the first time the isotopic niche partitioning of co-occurring, teleost reef predators spanning multiple families. Using a novel tri-isotope ellipsoid approach, we investigate the feeding strategies of seven of these species across an atoll seascape in the Maldives. We demonstrate substantial spatial variation in resource use of all predator populations. Furthermore, within each area, there was evidence of intraspecific variation in feeding behaviors that could not wholly be attributed to individual body size. Assessing species at the population level will mask these intraspecific differences in resource use. Knowledge of resource use is important for predicting how species will respond to environmental change and spatial variation should be considered when investigating trophic diversity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA