Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Osteoarthritis Cartilage ; 24(11): 1940-1950, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27374878

RESUMO

OBJECTIVE: There is increasing evidence that joint shape is a potent predictor of osteoarthritis (OA) risk; yet the cellular events underpinning joint morphogenesis remain unclear. We sought to develop a genetically tractable animal model to study the events controlling joint morphogenesis. DESIGN: Zebrafish larvae were subjected to periods of flaccid paralysis, rigid paralysis or hyperactivity. Immunohistochemistry and transgenic reporters were used to monitor changes to muscle and cartilage. Finite Element Models were generated to investigate the mechanical conditions of rigid paralysis. Principal component analysis was used to test variations in skeletal morphology and metrics for shape, orientation and size were applied to describe cell behaviour. RESULTS: We show that flaccid and rigid paralysis and hypermobility affect cartilage element and joint shape. We describe differences between flaccid and rigid paralysis in regions showing high principal strain upon muscle contraction. We identify that altered shape and high strain occur in regions of cell differentiation and we show statistically significant changes to cell maturity occur in these regions in paralysed and hypermobile zebrafish. CONCLUSION: While flaccid and rigid paralysis and hypermobility affect skeletal morphogenesis they do so in subtly different ways. We show that some cartilage regions are unaffected in conditions such as rigid paralysis where static force is applied, whereas joint morphogenesis is perturbed by both flaccid and rigid paralysis; suggesting that joints require dynamic movement for accurate morphogenesis. A better understanding of how biomechanics impacts skeletal cell behaviour will improve our understanding of how foetal mechanics shape the developing joint.


Assuntos
Movimento , Animais , Fenômenos Biomecânicos , Osso e Ossos , Cartilagem , Morfogênese , Contração Muscular
2.
Osteoarthritis Cartilage ; 21(2): 269-78, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23159952

RESUMO

OBJECTIVE: Increasing evidence points to a strong genetic component to osteoarthritis (OA) and that certain changes that occur in osteoarthritic cartilage recapitulate the developmental process of endochondral ossification. As zebrafish are a well validated model for genetic studies and developmental biology, our objective was to establish the spatiotemporal expression pattern of a number of OA susceptibility genes in the larval zebrafish providing a platform for functional studies into the role of these genes in OA. DESIGN: We identified the zebrafish homologues for Mcf2l, Gdf5, PthrP/Pthlh, Col9a2, and Col10a1 from the Ensembl genome browser. Labelled probes were generated for these genes and in situ hybridisations were performed on wild type zebrafish larvae. In addition, we generated transgenic reporter lines by modification of bacterial artificial chromosomes (BACs) containing full length promoters for col2a1 and col10a1. RESULTS: For the first time, we show the spatiotemporal expression pattern of Mcf2l. Furthermore, we show that all six putative OA genes are dynamically expressed during zebrafish larval development, and that all are expressed in the developing skeletal system. Furthermore, we demonstrate that the transgenic reporters we have generated for col2a1 and col10a1 can be used to visualise chondrocyte hypertrophy in vivo. CONCLUSION: In this study we describe the expression pattern of six OA susceptibility genes in zebrafish larvae and the generation of two new transgenic lines marking chondrocytes at different stages of maturation. Moreover, the tools used demonstrate the utility of the zebrafish model for functional studies on genes identified as playing a role in OA.


Assuntos
Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Predisposição Genética para Doença/genética , Osteoartrite/genética , Osteoartrite/fisiopatologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Condrócitos/patologia , Cromossomos Artificiais Bacterianos/genética , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Colágeno Tipo II/fisiologia , Colágeno Tipo IX/genética , Colágeno Tipo IX/metabolismo , Colágeno Tipo IX/fisiologia , Colágeno Tipo X/genética , Colágeno Tipo X/metabolismo , Colágeno Tipo X/fisiologia , Fator 5 de Diferenciação de Crescimento/genética , Fator 5 de Diferenciação de Crescimento/fisiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Hipertrofia/genética , Proteína Relacionada ao Hormônio Paratireóideo/genética , Proteína Relacionada ao Hormônio Paratireóideo/fisiologia , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA