RESUMO
Human-Machine Interfaces (HMIs) have gained popularity as they allow for an effortless and natural interaction between the user and the machine by processing information gathered from a single or multiple sensing modalities and transcribing user intentions to the desired actions. Their operability depends on frequent periodic re-calibration using newly acquired data due to their adaptation needs in dynamic environments, where test-time data continuously change in unforeseen ways, a cause that significantly contributes to their abandonment and remains unexplored by the Ultrasound-based (US-based) HMI community. In this work, we conduct a thorough investigation of Unsupervised Domain Adaptation (UDA) algorithms for the re-calibration of US-based HMIs during within-day sessions, which utilize unlabeled data for re-calibration. Our experimentation led us to the proposal of a CNN-based architecture for simultaneous wrist rotation angle and finger gesture prediction that achieves comparable performance with the state-of-the-art while featuring 87.92% less trainable parameters. According to our findings, DANN (a Domain-Adversarial training algorithm), with proper initialization, offers an average 24.99% classification accuracy performance enhancement when compared to no re-calibration setting. However, our results suggest that in cases where the experimental setup and the UDA configuration may differ, observed enhancements would be rather small or even unnoticeable.
Assuntos
Algoritmos , Ultrassonografia , Humanos , Ultrassonografia/métodos , Interface Usuário-Computador , Punho/fisiologia , Punho/diagnóstico por imagem , Redes Neurais de Computação , Dedos/fisiologia , Sistemas Homem-Máquina , GestosRESUMO
In recent years, the successful application of Deep Learning methods to classification problems has had a huge impact in many domains. (1) Background: In biomedical engineering, the problem of gesture recognition based on electromyography is often addressed as an image classification problem using Convolutional Neural Networks. Recently, a specific class of these models called Temporal Convolutional Networks (TCNs) has been successfully applied to this task. (2) Methods: In this paper, we approach electromyography-based hand gesture recognition as a sequence classification problem using TCNs. Specifically, we investigate the real-time behavior of our previous TCN model by performing a simulation experiment on a recorded sEMG dataset. (3) Results: The proposed network trained with data augmentation yields a small improvement in accuracy compared to our existing model. However, the classification accuracy is decreased in the real-time evaluation, showing that the proposed TCN architecture is not suitable for such applications. (4) Conclusions: The real-time analysis helps in understanding the limitations of the model and exploring new ways to improve its performance.
Assuntos
Gestos , Redes Neurais de Computação , Eletromiografia , Extremidade SuperiorRESUMO
The range of applications of electromyography-based gesture recognition has increased over the last years. A common problem regularly encountered in literature is the inadequate data availability. Data augmentation, which aims at generating new synthetic data from the existing ones, is the most common approach to deal with this data shortage in other research domains. In the case of surface electromyography (sEMG) signals, there is limited research in augmentation methods and quite regularly the results differ between available studies. In this work, we provide a detailed evaluation of existing (i.e., additive noise, overlapping windows) and novel (i.e., magnitude warping, wavelet decomposition, synthetic sEMG models) strategies of data augmentation for electromyography signals. A set of metrics (i.e., classification accuracy, silhouette score, and Davies-Bouldin index) and visualizations help with the assessment and provides insights about their performance. Methods like signal magnitude warping and wavelet decomposition yield considerable increase (up to 16%) in classification accuracy across two benchmark datasets. Particularly, a significant improvement of 1% in the classification accuracy of the state-of-the-art model in hand gesture recognition is achieved.
Assuntos
Eletromiografia , Gestos , Reconhecimento Automatizado de Padrão , Algoritmos , Mãos , HumanosRESUMO
In the context of the ageing global population, researchers and scientists have tried to find solutions to many challenges faced by older people. Falls, the leading cause of injury among elderly, are usually severe enough to require immediate medical attention; thus, their detection is of primary importance. To this effect, many fall detection systems that utilize wearable and ambient sensors have been proposed. In this study, we compare three newly proposed data fusion schemes that have been applied in human activity recognition and fall detection. Furthermore, these algorithms are compared to our recent work regarding fall detection in which only one type of sensor is used. The results show that fusion algorithms differ in their performance, whereas a machine learning strategy should be preferred. In conclusion, the methods presented and the comparison of their performance provide useful insights into the problem of fall detection.
Assuntos
Aprendizado de Máquina , Acidentes por Quedas , Algoritmos , Humanos , Dispositivos Eletrônicos VestíveisRESUMO
One of the new challenges of Information Technology in the medical world is the protection and authentication of a variety of digital medical files, datasets, and images. In this work, the ability of magnetic resonance imaging (MRI) slice sequences to hide digital data is investigated and more specifically the case that the hidden data are the regions of interest (ROI) of the MRI slices. The regions of non-interest (RONI) are used as cover. The hiding capacity of the whole sequence is taken into account. Any ROI-targeted tampering attempt can be detected, and the original image can be self-restored (under certain conditions) by extracting the ROI from the RONI.
Assuntos
Diagnóstico por Imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por ComputadorRESUMO
In the context of low-cost video encoding, distributed video coding (DVC) has recently emerged as a potential candidate for uplink-oriented applications. This paper builds on a concept of correlation channel (CC) modeling, which expresses the correlation noise as being statistically dependent on the side information (SI). Compared with classical side-information-independent (SII) noise modeling adopted in current DVC solutions, it is theoretically proven that side-information-dependent (SID) modeling improves the Wyner-Ziv coding performance. Anchored in this finding, this paper proposes a novel algorithm for online estimation of the SID CC parameters based on already decoded information. The proposed algorithm enables bit-plane-by-bit-plane successive refinement of the channel estimation leading to progressively improved accuracy. Additionally, the proposed algorithm is included in a novel DVC architecture that employs a competitive hash-based motion estimation technique to generate high-quality SI at the decoder. Experimental results corroborate our theoretical gains and validate the accuracy of the channel estimation algorithm. The performance assessment of the proposed architecture shows remarkable and consistent coding gains over a germane group of state-of-the-art distributed and standard video codecs, even under strenuous conditions, i.e., large groups of pictures and highly irregular motion content.