Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 143(9): 3407-3415, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33629851

RESUMO

A bowl-shaped calix[4]arene with its exciting host-guest chemistry is a versatile supramolecular building block for the synthesis of distinct coordination cages or metal-organic frameworks. However, its utility in the synthesis of crystalline covalent organic frameworks (COFs) remains challenging, presumably due to its conformational flexibility. Here, we report the synthesis of a periodic 2D extended organic network of calix[4]arenes joined by a linear benzidine linker via dynamic imine bonds. By tuning the interaction among neighboring calixarene units through varying the concentration in the reaction mixture, we show the selective formation of interpenetrated (CX4-BD-1) and non-interpenetrated (CX4-BD-2) frameworks. The cone-shaped calixarene moiety in the structural backbone allows for the interweaving of two neighboring layers in CX4-BD-1, making it a unique example of interpenetrated 2D layers. Due to the high negative surface charge from calixarene units, both COFs have shown high performance in charge-selective dye removal and an exceptional selectivity for cationic dyes irrespective of their molecular size. The charge distribution of the COFs and the resulting selectivity for the cationic dyes were further investigated using computational methods.

2.
Chemistry ; 24(34): 8648-8655, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29665187

RESUMO

Owing to their chemical and thermal stabilities, high uptake capacities, and easy recyclability, covalent organic polymers (COPs) have shown promise as pollutant sponges. Herein, we describe the use of diazo coupling to synthesize two cationic COPs, COP1++ and COP2++ , that incorporate a viologen-based molecular switch and an organic macrocycle, calix[4]arene. The COPs form nanosheets that have height profiles of 6.00 nm and 8.00 nm, respectively, based on AFM measurements. The sheets remain morphologically intact upon one- or two-electron reductions of their viologen subunits. MD simulations of the COPs containing dicationic viologens indicate that the calix[4]arenes adopt a partial cone conformation and that, in height, the individual 2D polymer layers are 5.48 Šin COP1++ and 5.65 Šin COP2++ , which, together with the AFM measurements, suggests that the nanosheets are composed of 11 and 14 layers, respectively. Whether their viologens are in dicationic, radical cationic, or neutral form, the COPs exhibit high affinity for iodine, reaching up to 200 % mass increase when exposed to iodine vapor at 70 °C, which makes the materials among the best-performing nanosheets for iodine capture reported in the literature. In addition, the COPs effectively remove Congo red from solution in the pH range of 2-10, reaching nearly 100 % removal within 15 minutes at acidic pH.

3.
J Am Chem Soc ; 139(28): 9558-9565, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28506068

RESUMO

Morphology influences the functionality of covalent organic networks and determines potential applications. Here, we report for the first time the use of Zincke reaction to fabricate, under either solvothermal or microwave conditions, a viologen-linked covalent organic network in the form of hollow particles or nanosheets. The synthesized materials are stable in acidic, neutral, and basic aqueous solutions. Under basic conditions, the neutral network assumes radical cationic character without decomposing or changing structure. Solvent polarity and heating method determine product morphology. Depending upon solvent polarity, the resulting polymeric network forms either uniform self-templated hollow spheres (HS) or hollow tubes (HT). The spheres develop via an inside-out Ostwald ripening mechanism. Interestingly, microwave conditions and certain solvent polarities result in the formation of a robust covalent organic gel framework (COGF) that is organized in nanosheets stacked several layers thick. In the gel phase, the nanosheets are crystalline and form honeycomb lattices. The use of the Zincke reaction has previously been limited to the synthesis of small viologen molecules and conjugated viologen oligomers. Its application here expands the repertoire of tools for the fabrication of covalent organic networks (which are usually prepared by dynamic covalent chemistry) and for the synthesis of viologen-based materials. All three materials-HT, HS, and COGF-serve as efficient adsorbents of iodine due to the presence of the cationic viologen linker and, in the cases of HT and HS, permanent porosity.

4.
Chemistry ; 23(35): 8333-8347, 2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28164384

RESUMO

Paul Ehrlich's vision of a "magic bullet" cure for disease inspires the modern design of nanocarriers whose purpose is to deliver drug cargo to specific sites in the body while circumventing endogenous immunological clearance mechanisms. Iron oxide nanoparticles (IONPs) have emerged as particularly promising nanocarriers because of their biodegradability, ability to be guided magnetically to sites of pathology, mediation of hyperthermic therapy, and imaging capabilities. In this review, we focus on the design and drug-delivery aspects of IONPs coated with organic macrocycles (crown ethers, cyclodextrins, calix[n]arenes, cucurbit[n]urils, or pillar[n]arenes), which, by means of reversible complexation, allow for the convenient loading and release of drug molecules. Macrocycles can be attached to IONPs indirectly or directly. Indirect attachment requires the use of small organic linking molecules or conjugation to shell materials. Direct attachment requires neither. We discuss in detail drug release from the macrocycles, highlighting mechanisms that depend on external stimuli such as changes in pH, the competitive binding of ions or small molecules, or the application of ultrasound or electromagnetic radiation.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Férricos/química , Compostos Macrocíclicos/química , Nanopartículas de Magnetita/química , Animais , Antineoplásicos/efeitos adversos , Linhagem Celular Tumoral , Sobrevivência Celular , Meios de Contraste/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Imageamento por Ressonância Magnética/métodos , Tamanho da Partícula , Propriedades de Superfície , Ultrassonografia/métodos
5.
Mater Horiz ; 11(9): 2077-2094, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38436072

RESUMO

Fluorescent covalent organic frameworks (COFs) have emerged as promising candidates for imaging living cells due to their unique properties and adjustable fluorescence. In this mini-review, we provide an overview of recent advancements in fluorescent COFs for bioimaging applications. We discuss the strategies used to design COFs with desirable properties such as high photostability, excellent biocompatibility, and pH sensitivity. Additionally, we explore the various ways in which fluorescent COFs are utilized in bioimaging, including cellular imaging, targeting specific organelles, and tracking biomolecules. We delve into their applications in sensing intracellular pH, reactive oxygen species (ROS), and specific biomarkers. Furthermore, we examine how functionalization techniques enhance the targeting and imaging capabilities of fluorescent COFs. Finally, we discuss the challenges and prospects in the field of fluorescent COFs for bioimaging in living cells, urging further research in this exciting area.


Assuntos
Corantes Fluorescentes , Estruturas Metalorgânicas , Corantes Fluorescentes/química , Humanos , Estruturas Metalorgânicas/química , Imagem Óptica/métodos , Espécies Reativas de Oxigênio/metabolismo , Materiais Biocompatíveis , Animais , Concentração de Íons de Hidrogênio
7.
Sci Rep ; 13(1): 11287, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438417

RESUMO

2-Thienylbenzimidazole (TBI)/cucurbit[7]uril (CB7) host-guest complex was used as a motif to significantly improve the turnover of γ-Fe3O4 magnetic nanoparticles for potential application in the separation of toxic mercuric ions in polluted water samples. The mechanism of restoring the original solid materials is based on applying the pH-controlled preferential binding of the CB7 host to the TBI guest. The analytical application of this concept has not been realized in the literature. The pH-controlled stimuli-responsive abilities were confirmed in aqueous solution by the three-order of magnitudes higher stability constant of the protonated TBIH+/CB7 complex (e.g., K = 4.8 × 108 M-1) when compared to neutral TBI/CB7 complex (e.g., K = 2.4 × 105 M-1), also manifested in an increase in pKa values by ~ 3.3 units in the ground state. The supramolecular interaction and adsorption on iron oxide nanoparticles (NPs) were also spectroscopically confirmed in the solid state. The excited-state lifetime values of TBI/CB7NPs increased upon lowering the pH values (e.g., from 0.6 to 1.3 ns) with a concomitant blue shift of ~ 25 nm because of polarity effects. The time-resolved photoluminescent behaviors of the final solids in the presence of CB7 ensured pH-driven reusable systems for capturing toxic mercuric ions. The study offers a unique approach for the controllable separation of mercury ions using an external magnet and in response to pH through preferential binding of the host to guest molecules on the top of magnetic surfaces.

8.
Chem Commun (Camb) ; 59(18): 2608-2611, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36757151

RESUMO

A novel class of copper-based 2D-c-MOF was synthesized from 1,3,5-triformylphloroglucinol using green mechano-chemistry. Herein, metal coordination with the salicylaldehyde functional moiety was explored for the first time in MOFs. Moreover, an intrinsic semiconductive copper-based SA-MOF thin film was fabricated using an in situ salt-free method at room temperature.

9.
Chem Commun (Camb) ; 59(38): 5753-5756, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37092976

RESUMO

Covalent organic frameworks (COFs) have been used in cell imaging, but very rarely for imaging specific cell conditions. Herein, a ß-ketoenamine-based fluorescent COF was post-synthetically modified to incorporate a hypoxia-targeting molecule. Fluorescence microscopy imaging shows that the material discriminates between HeLa cells grown under hypoxia and those cultured under normoxia.


Assuntos
Estruturas Metalorgânicas , Hipóxia Tumoral , Humanos , Células HeLa , Corantes , Hipóxia , Microscopia de Fluorescência , Nitrorredutases
10.
Adv Sci (Weinh) ; 10(29): e2303562, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37590383

RESUMO

The development of n-type organic semiconductors has evolved significantly slower in comparison to that of p-type organic semiconductors mainly due to the lack of electron-deficient building blocks with stability and processability. However, to realize a variety of organic optoelectronic devices, high-performance n-type polymer semiconductors are essential. Herein, conjugated microporous polymers (CMPs) comprising isoindigo acceptor units linked to benzene or pyrene donor units (BI and PI) showing n-type semiconducting behavior are reported. In addition, considering the challenges of deposition of a continuous and homogeneous thin film of CMPs for accurate Hall measurements, a plasma-assisted fabrication technique is developed to yield uniform thin films. The fully conjugated 2D networks in PI- and BI-CMP films display high electron mobility of 6.6 and 3.5 cm2 V-1 s-1 , respectively. The higher carrier concentration in PI results in high conductivity (5.3 mS cm-1 ). Both experimental and computational studies are adequately combined to investigate structure-property relations for this intriguing class of materials in the context of organic electronics.

11.
J Hazard Mater ; 459: 132261, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37572608

RESUMO

Efficient enzyme immobilization is crucial for the successful commercialization of large-scale enzymatic water treatment. However, issues such as lack of high enzyme loading coupled with enzyme leaching present challenges for the widespread adoption of immobilized enzyme systems. The present study describes the development and bioremediation application of an enzyme biocomposite employing a cationic macrocycle-based covalent organic framework (COF) with hierarchical porosity for the immobilization of horseradish peroxidase (HRP). The intrinsic hierarchical porous features of the azacalix[4]arene-based COF (ACA-COF) allowed for a maximum HRP loading capacity of 0.76 mg/mg COF with low enzyme leaching (<5.0 %). The biocomposite, HRP@ACA-COF, exhibited exceptional thermal stability (∼200 % higher relative activity than the free enzyme), and maintained ∼60 % enzyme activity after five cycles. LCMSMS analyses confirmed that the HRP@ACA-COF system was able to achieve > 99 % degradation of seven diverse types of emerging pollutants (2-mercaptobenzothiazole, paracetamol, caffeic acid, methylparaben, furosemide, sulfamethoxazole, and salicylic acid)in under an hour. The described enzyme-COF system offers promise for efficient wastewater bioremediation applications.


Assuntos
Estruturas Metalorgânicas , Porosidade , Enzimas Imobilizadas/metabolismo , Catálise , Biodegradação Ambiental , Peroxidase do Rábano Silvestre/metabolismo
12.
Sci Rep ; 13(1): 19443, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945788

RESUMO

The ordered porous frameworks like MOFs and COFs are generally constructed using the monomers through distinctive metal-coordinated and covalent linkages. Meanwhile, the inter-structural transition between each class of these porous materials is an under-explored research area. However, such altered frameworks are expected to have exciting features compared to their pristine versions. Herein, we have demonstrated a chemical-induction phase-engineering strategy to transform a two-dimensional conjugated Cu-based SA-MOF (Cu-Tp) into 2D-COFs (Cu-TpCOFs). The structural phase transition offered in-situ pore size engineering from 1.1 nm to 1.5-2.0 nm. Moreover, the Cu-TpCOFs showed uniform and low percentage-doped (~ 1-1.5%) metal distribution and improved crystallinity, porosity, and stability compared to the parent Cu-Tp MOF. The construction of a framework from another framework with new linkages opens interesting opportunities for phase-engineering.

13.
ACS Sens ; 7(9): 2743-2749, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36053557

RESUMO

Numerous species of bacteria pose a serious threat to human health and cause several million deaths annually. It is therefore essential to have quick, efficient, and easily operable methods of bacterial cell detection. Herein, we synthesize a novel cationic covalent organic polymer (COP) named CATN through the Menshutkin reaction and evaluate its potential as an impedance sensor for Escherichia coli cells. On account of its positive surface charge (ζ-potential = +21.0 mV) and pyridinium moieties, CATN is expected to interact favorably with bacteria that possess a negatively charged cell surface through electrostatic interactions. The interdigitated electrode arrays were coated with CATN using a simple yet non-traditional method of electrophoresis and then used in two-electrode electrochemical impedance spectroscopy (EIS) measurements. The impedance response showed a linear relationship with the increasing concentration of E. coli. The system was sensitive to bacterial concentrations as low as ∼30 CFU mL-1, which is far below the concentration considered to cause illnesses. The calculated limit of detection was as low as 2 CFU mL-1. This work is a rare example of a COP used in this type of bacteria sensing and is anticipated to stimulate further interest in the synthesis of organic polymers for EIS-based sensors.


Assuntos
Escherichia coli , Polímeros , Bactérias , Espectroscopia Dielétrica , Eletrodos , Humanos
14.
ACS Appl Mater Interfaces ; 14(27): 30796-30801, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35713305

RESUMO

Metal nanoparticles are potent reaction catalysts, but they tend to aggregate, thereby limiting their catalytic efficiency. Their coordination with specific functional groups within a porous structure prevents their aggregation and facilitates the mass flow of catalytic starting materials and products. Herein, we use a thiacalix[4]arene-based polymer as a porous support with abundant docking sites for Au nanoparticles. The sulfur atoms bridging the phenolic subunits of thiacalix[4]arene serve as Lewis basic sites that coordinate Au atoms. Therefore, this approach takes advantage of the functional groups inherent in the monomer and avoids laborious postsynthetic modifications of the polymer. The presented system was tested for visible-light-driven photocatalytic CO2 reduction, where it showed adequate ability to generate 6.74 µmol g-1 CO over the course of 4 h, while producing small amounts of the CH4 product. This study aims to stimulate interest in the design and development of synthetically simpler porous polymer supports for various metal nanoparticles in catalytic and other applications.

15.
ACS Appl Mater Interfaces ; 14(34): 39293-39298, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35994411

RESUMO

Azacalix[n]arenes (ACAs) are lesser-known cousins of calix[n]arenes that contain amine bridges instead of methylene bridges, so they generally have higher flexibility due to enlarged cavities. Herein, we report a highly substituted cationic azacalix[4]arene-based covalent organic framework (ACA-COF) synthesized by the Zincke reaction under microwave irradiation. The current work is a rare example of a synthetic strategy that utilizes the chemical functionalization of an organic macrocycle to constrain its conformational flexibility and, thereby, produce an ordered material. Considering the ACA cavity dimensions, and the density and diversity of the polar groups in ACA-COF, we used it for adsorption of uric acid and creatinine, two major waste products generated during hemodialysis treatment in patients with renal failure. This type of application, which has the potential to save ∼400 L of water per patient per week, has only been recognized in the last decade, but could effectively address the problem of water scarcity in arid areas of the world. Rapid adsorption rates (up to k = 2191 g mg-1 min-1) were observed in our COF, exceeding reported values by several orders of magnitude.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Adsorção , Humanos , Estruturas Metalorgânicas/química , Diálise Renal , Resíduos , Poluentes Químicos da Água/análise
16.
ACS Appl Mater Interfaces ; 14(1): 2015-2022, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34931799

RESUMO

Photocatalytic CO2 reduction into formate (HCOO-) has been widely studied with semiconductor and molecule-based systems, but it is rarely investigated with covalent organic frameworks (COFs). Herein, we report a novel donor-acceptor COF named Co-PI-COF composed of isoindigo and metallated porphyrin subunits that exhibits high catalytic efficiency (∼50 µmol formate g-1 h-1) at low-power visible-light irradiation and in the absence of rare metal cocatalysts. Density functional theory calculations and experimental diffuse-reflectance measurements are used to explain the origin of catalytic efficiency and the particularly low band gap (0.56 eV) in this material. The mechanism of photocatalysis is also studied experimentally and is found to involve electron transfer from the sacrificial agent to the excited Co-PI-COF. The observed high-efficiency conversion could be ascribed to the enhanced CO2 adsorption on the coordinatively unsaturated cobalt centers, the narrow band gap, and the efficient transfer of the charge originating from the postsynthetic metallation. It is anticipated that this study will pave the way toward the design of new simple and efficient catalysts for photocatalytic CO2 reduction into useful products.

17.
ACS Appl Mater Interfaces ; 13(13): 14802-14815, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33759501

RESUMO

A new and innovative class of calixarene-based polymers emerged as adsorbents for a variety of compounds and ions in solution and vapor media. These materials take advantage of the modifiable rims and hydrophobic cavities of the calixarene monomers, in addition to the porous nature of the polymeric matrix. With main-chain calixarenes' function as supramolecular hosts and the polymers' high surface areas, polycalixarenes can effectively encapsulate target analytes. This feature is particularly useful for environmental remediation as dangerous and toxic molecules reversibly bind to the macrocyclic cavity, which facilitates their removal and enables repeated use of the polymeric sorbent. This Spotlight touches on the unique characteristics of the calixarene monomers and discusses the synthetic methods of our reported calixarene-based porous polymers, including Sonogashira-Hagihara coupling, and diazo and imine bond formation. It then discusses the promising applications of these materials in adsorbing dyes, micropollutants, iodine, mercury, paraquat, and perfluorooctanoic acid (PFOA) from water. In most cases, these reports cover materials that outperform others in terms of recyclability, rates of adsorption, or uptake capacities of specific pollutants. Finally, this Spotlight addresses the current challenges and future aspects of utilizing porous polymers in pollution treatment.

18.
ACS Sens ; 6(4): 1461-1481, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33825458

RESUMO

Following the advancements and diversification in synthetic strategies for porous covalent materials in the literature, the materials science community started to investigate the performance of covalent organic polymers (COPs) and covalent organic frameworks (COFs) in applications that require large surface areas for interaction with other molecules, chemical stability, and insolubility. Sensorics is an area where COPs and COFs have demonstrated immense potential and achieved high levels of sensitivity and selectivity on account of their tunable structures. In this review, we focus on those covalent polymeric systems that use fluorescence spectroscopy as a method of detection. After briefly reviewing the physical basis of fluorescence-based sensors, we delve into various kinds of analytes that have been explored with COPs and COFs, namely, heavy metal ions, explosives, biological molecules, amines, pH, volatile organic compounds and solvents, iodine, enantiomers, gases, and anions. Throughout this work, we discuss the mechanisms involved in each sensing application and aim to quantify the potency of the discussed sensors by providing limits of detection and quenching constants when available. This review concludes with a summary of the surveyed literature and raises a few concerns that should be addressed in the future development of COP and COF fluorescence-based sensors.


Assuntos
Substâncias Explosivas , Estruturas Metalorgânicas , Gases , Polímeros , Porosidade
19.
ACS Appl Mater Interfaces ; 12(38): 43160-43166, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32851843

RESUMO

On account of its nonbiodegradable nature and persistence in the environment, perfluorooctanoic acid (PFOA) accumulates in water resources and poses serious environmental issues in many parts of the world. Here, we present the development of two fluorine-rich calix[4]arene-based porous polymers, FCX4-P and FCX4-BP, and demonstrate their utility for the efficient removal of PFOA from water. These materials featured Brunauer-Emmett-Teller (BET) surface areas of up to 450 m2 g-1, which is slightly lower than their nonfluorinated counterparts (up to 596 m2 g-1). FCX4-P removes PFOA at environmentally relevant concentrations with a high rate constant of 3.80 g mg-1 h-1 and reached an exceptional maximum PFOA uptake capacity of 188.7 mg g-1. In addition, it could be regenerated by simple methanol wash and reused without a significant decrease in performance.

20.
Chem Commun (Camb) ; 55(60): 8876-8879, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31286121

RESUMO

Here we report template-free synthesis of imine-linked calix[4]arene hollow nanocapsules and their utility in the effective delivery of a poorly soluble cancer drug into tumor cells. These stimuli-responsive nanocapsules show high drug loading and release which resulted in a 40-fold higher cytotoxicity for breast cancer cell line over normal cells.


Assuntos
Antineoplásicos/farmacologia , Calixarenos/química , Camptotecina/farmacologia , Portadores de Fármacos/química , Nanocápsulas/química , Fenóis/química , Antineoplásicos/química , Calixarenos/síntese química , Calixarenos/toxicidade , Camptotecina/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Nanocápsulas/toxicidade , Fenóis/síntese química , Fenóis/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA