Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 155: 125-132, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29510307

RESUMO

The fate of organic chemicals and their metabolites in soils is often investigated in model matrices having undergone various pre-treatment steps that may qualitatively or quantitatively interfere with the results. Presently, effects associated with soil sterilization by γ-irradiation and soil spiking using an organic solvent were studied in one freshly spiked soil (sterilization prior to contamination) and its field-contaminated (sterilization after contamination) counterpart for the model organic compound 1,1-Dichloro-2,2-bis(4-chlorophenyl)ethene (p,p'-DDE). Changes in the sorption and potential bioavailability of spiked and native p,p'-DDE were measured by supercritical fluid extraction (SFE), XAD-assisted extraction (XAD), and solid-phase microextraction (SPME) and linked to qualitative changes in soil organic matter (SOM) chemistry measured by diffuse reflectance infrared Fourier-transform (DRIFT) spectroscopy. Reduced sorption of p,p´-DDE detected with XAD and SPME was associated more clearly with spiking than with sterilization, but SFE showed a negligible impact. Spiking resulted in an increase of the DRIFT-derived hydrophobicity index, but irradiation did not. Spectral peak height ratio descriptors indicated increasing hydrophobicity and hydrophilicity in pristine soil following sterilization, and a greater reduction of hydrophobic over hydrophilic groups as a consequence of spiking. In parallel, reduced sorption of p,p´-DDE upon spiking was observed. Based on the present samples, γ-irradiation appears to alter soil sorptive properties to a lesser extent when compared to common laboratory processes such as spiking with organic solvents.


Assuntos
Diclorodifenil Dicloroetileno/química , Raios gama , Poluentes do Solo/química , Solo/química , Adsorção , Disponibilidade Biológica , Microextração em Fase Sólida , Solventes/química
2.
Environ Sci Pollut Res Int ; 29(16): 23323-23337, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34807391

RESUMO

The study showed novel findings about changes in the fate and bioavailability of conazole fungicides (CFs) after biochar (BC) addition to soil. Two contrasting soils (low- and high-sorbing of CF; L soils, H soils) were amended by three BCs (low-, moderate-, and high-sorbing of CF; L-BC, M-BC, H-BC) at 0.2% and 2% doses. Epoxiconazole (EPC) and tebuconazole (TBC) were then added to the soil-BC mixtures, and their degradation, bioaccumulation in earthworms (Eisenia andrei), and bioconcentration in lettuce (Lactuca sativa) were studied for three months. Also, stir bar sorptive extraction (SBSE) was performed to determine CF (bio)accessibility. The EPC and TBC degradation in the soil-BC mixtures followed usually the first-order decay kinetics. The BC addition prevalently decreased the pesticides degradation in the L soil mixtures but often increased it in the H soil mixtures. In general, EPC degraded less than TBC. BC type and dose roles in the pesticides degradation were unclear. The BC addition significantly reduced pesticide uptake to the earthworms in the L soil mixtures (by 37-96%) and in the H soil mixtures (by 6-89%) with 2% BC. The BC addition reduced pesticide uptake to the lettuce roots and leaves significantly-up to two orders of magnitude, and this reduction was strong in H soil mixtures at 2% of BC. The BC addition reduced the CF (bio)accessibility measured by SBSE in all L soil mixtures and some H soil mixtures with 2% BC. Although not significant, it also seems that the pesticide bioaccumulation, bioconcentration, and (bio)accessibility were decreasing according to the BC type (L-BC > M-BC > H-BC). The pesticide concentrations in the earthworms and lettuce correlated significantly to the SBSE results, which indicates this technique as a possible predictor of biotic uptake. Our results showed that the interactions were hard to predict in the complex soil-BC-pesticide system.


Assuntos
Fungicidas Industriais , Oligoquetos , Poluentes do Solo , Animais , Disponibilidade Biológica , Carvão Vegetal/metabolismo , Fungicidas Industriais/análise , Oligoquetos/metabolismo , Solo , Poluentes do Solo/análise
3.
Sci Total Environ ; 750: 141600, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33182213

RESUMO

The production and use of chiral pesticides are triggered by the need for more complex molecules capable of effectively combating a greater spectrum of pests and crop diseases, while sustaining high production yields. Currently, chiral pesticides comprise about 30% of all pesticides in use; however, some pesticide groups such as conazole fungicides (CFs) consist almost exclusively of chiral compounds. CFs are produced and field-applied as racemic (1:1) mixtures of two enantiomers (one chiral center in the molecule) or four diastereoisomers, i.e., two pairs of enantiomers (two chiral centers in the molecule). Research on the stereoselective environmental behavior and effects of chiral pesticides such as CFs has become increasingly important within the fields of environmental chemistry and ecotoxicology. This is motivated by the fact that currently, the fate and effects of chiral pesticides such as CFs that arise due to their stereoselectivity are not fully understood and integrated into risk assessment and regulatory decisions. In order to fill this gap, a summary of the state-of-the-art literature related to the stereospecific fate and effects of CFs is needed. This will also benefit the agrochemistry industry as they enhance their understanding of the environmental implications of CFs which will aid future research and development of chiral products. This review provides a collection of >80 stereoselective studies for CFs related to chiral analytical methods, fungicidal activity, non-target toxicity, and behavior of this broadly used pesticide class in the soil environment. In addition, the review sheds more light on mechanisms behind stereoselectivity, considers possible agricultural and environmental implications, and suggests future directions for the safe use of chiral CFs and the reduction of their environmental footprint.

4.
Chemosphere ; 274: 129700, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33545596

RESUMO

Biochar usage in agriculture becomes increasingly important for the improvement of soil properties. However, from the perspective of pesticides, biochar can influence exposure to pesticides of both target and non-target organisms and also pesticides' fate in soil. Our study investigated degradation and bioaccumulation (in the Eisenia andrei earthworm) of two conazole fungicides, epoxiconazole and tebuconazole, added to high- and low-sorbing soils (by means of fungicides' sorption measured beforehand) amended with low-, moderate- and high-sorbing biochars at 0.2% and 2% doses. We aimed to investigate the effects of contrasting soil and biochar properties, different doses of biochar in soil-biochar mixtures, and different compounds on the degradation and bioaccumulation. We also wanted to explore if the beforehand determined sorption of fungicides on individual soils and biochars is manifested somehow in their degradation and/or bioaccumulation in soil-biochar mixtures. The biochars' presence in the soils promoted the degradation of fungicides with a clear effect of dose and soil, but less clear effect of biochar or compound. The bioaccumulation factors were higher in low-sorbing soil variants and also decreased with increasing biochar dose. For low-sorbing soil variants, the bioaccumulation was also influenced by the type of biochar corresponding to its sorbing potential and the possible effect on the bioavailability of the fungicides. Our results show that mixing of biochars with soils changes the fate and bioaccumulation of the conazole fungicides. However, the sorption results from original materials are not straightforwardly manifested in the more complex soil-biota system.


Assuntos
Fungicidas Industriais , Oligoquetos , Poluentes do Solo , Animais , Bioacumulação , Carvão Vegetal , Compostos de Epóxi , Fungicidas Industriais/análise , Solo , Poluentes do Solo/análise , Triazóis
5.
Sci Total Environ ; 743: 140821, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679504

RESUMO

Five conazole fungicides (CFs) (epoxiconazole, tebuconazole, myclobutanil, uniconazole (P), rac-uniconazole, and diniconazole) were tested in order to provide additional information on i) the effects of CFs on the nematode Caenorhabditis elegans and on the aquatic insect Chironomus riparius under acute exposure scenarios and in multi-generation exposure studies, taking advantage of the short life cycle of nematodes and ii) on the bioaccumulation (earthworm Eisenia andrei) profiles of CFs including also the enantiomer-specific assessment of degradation in soils and uptake/elimination by earthworms. Acute toxicity was considered low following the exposure of up to 2.5 mg of CFs per liter of the test medium. In a multigeneration study on nematodes, all five generations exposed to epoxiconazole were significantly negatively affected in terms of reproductive efficiency, and the severity of effects increased from F0 to F1 generation and was sustained thereafter. Adverse effects were also observed in the case of uniconazole (P) and diniconazole, and similarly to epoxiconazole, the effects occurred within the active life of the pesticides and were assumed to be based on their half-lives in soil (e.g., 53.3 to 691 days for uniconazole and diniconazole in our study) and in sediment/water. Bioaccumulation of diniconazole and uniconazole by earthworms varied between soils (Lufa 2.1 ≥ Lufa 2.4 > sandy soil > Lufa 2.2) and compounds (diniconazole > uniconazole) and was enantioselective. Earthworms preferentially accumulated R-uniconazole as a result of faster elimination of the S-form, which was evidenced from the enantiomer-specific uptake/elimination rate constants derived from the bioaccumulation profiles. Our results suggest that multigeneration exposure studies can advantageously be used for assessing the long-term and trans-general effects of pesticides. Also, the enantioselectivity in bioaccumulation observed for both uniconazole and diniconazole suggests that enantioselectivity in the fate and effects should be considered when exploring ways for safer and sustainable use of chiral pesticides.


Assuntos
Fungicidas Industriais/análise , Oligoquetos , Poluentes do Solo/análise , Animais , Bioacumulação , Solo , Estereoisomerismo
6.
Sci Total Environ ; 662: 873-880, 2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-30708302

RESUMO

A pot experiment was carried out in which aged polychlorinated biphenyls (PCBs) contaminated soil was amended with biochar, and three phases: earthworms, turnips and polyethylene (PE) passive samplers, were added simultaneously in order to investigate changes in bioavailability of PCB following biochar amendment. Two biochars were used: one made from rice husk in Indonesia using local techniques and the other made from mixed wood shavings using more advanced technology. The biochars were amended at 1 and 4% doses. The overall accumulation of PCBs to the phases followed the order: earthworm lipid > PE > turnip. The rice husk biochar reduced PCB accumulation to a greater degree than the mixed wood biochar for all phases, however there was no effect of dose for either biochar. Earthworm uptake was reduced between 52% and 91% for rice husk biochar and by 19% to 63% for mix wood biochar. Turnip uptake was not significantly reduced by biochar amendment. Phase to soil accumulation factors (PSAF) were around 0.5 for turnips, approximately 5 for PE and exceeded 100 for earthworms. This study demonstrates that both biochars can be a sustainable alternative for in situ soil remediation and that PE can be used as tool to simulate the uptake in earthworms and thus remediation effectiveness.


Assuntos
Brassica napus/metabolismo , Carvão Vegetal/análise , Monitoramento Ambiental/métodos , Oligoquetos/metabolismo , Bifenilos Policlorados/metabolismo , Polietileno/análise , Poluentes do Solo/metabolismo , Animais , Solo/química
7.
Chemosphere ; 216: 404-412, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30384310

RESUMO

Produced water (PW) represents the largest volume waste stream in oil and gas production operations from most offshore platforms. PW is difficult to monitor as releases are rapidly diluted and concentrations can reach trace levels. The use of passive samplers can over come this. Here polyethylene (PE) was calibrated for a diverse range of PW pollutants. Zebrafish were exposed to dilutions of PW and passive sampler extracts in order to investigate the relationship between freely dissolved chemical concentrations and acute toxic effects. The raw PW had an LC50 of 13% (percentage of PW in the standardized zebrafish medium). Observed non-viable deformations to embryos (at 5 hpf) included heart and yolk edema, head, spine and tail deformations. The dose-response relationship of lethal effects showed that if 0.0041 g of PE is exposed to this PW, then extracted, 50% of exposed D. rerio will suffer lethal effects. The sum of tested freely dissolved concentrations that led to 50% lethal effects (mortality and non-viable deformations) was 2.32 × 10-4 mg/L for PW and 7.92 × 10-2 mg/L for PE. This implies that exposure to raw PW was more toxic than exposure to PE extracts. This toxicity was attributed both to the presence of contaminants as well as PW salinity. Passive samplers are able to detect very low freely dissolved pollutant concentrations which is important for assessing the spatial dilution of PW releases. Bioassays provide complimentary information as they account for all toxic compounds including those that are not taken up by passive samplers.


Assuntos
Monitoramento Ambiental/métodos , Indústria de Petróleo e Gás/normas , Águas Residuárias/química , Poluentes Químicos da Água/química , Animais , Bioensaio , Poluentes Químicos da Água/análise
8.
Environ Pollut ; 243(Pt B): 1479-1486, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30292157

RESUMO

Ionizing γ-irradiation and solvent-assisted spiking are frequently applied to eliminate microbial activity and to induce hydrophobic organic compounds (HOCs) into soil, respectively, when studying the accumulation of chemicals in terrestrial organisms. However, the side-effects that may arise from these treatments on soil-HOC interaction and, subsequently, the kinetics and extents of bioaccumulation are not thoroughly understood. To this end, the accumulation of 1,1-dichloro-2,2-bis(p-chlorophenyl)etylene (p,p'-DDE) by Eisenia andrei was studied in sterilized or unsterilized and freshly spiked (FS) or historically contaminated (HC) soils in parallel with an analysis of aliphatic and hydrophilic soil organic matter (SOM) moieties using mid-infrared diffuse reflectance spectroscopy (DRIFT-S). Irradiation did not impart significant changes on spectral SOM descriptors. In contrast, earthworm inhabitation increased the relative presence of aliphatic moieties to a greater extent than hydrophilic ones, reaching or exceeding pre-treatment levels. Overall, effects on SOM chemistry can be ranked as earthworms > spiking > irradiation. Corresponding changes at the bioaccumulation level were observed for the FS soil (i.e., a 27% reduction in bioaccumulation upon sterilization) but not for the HC soil. This implies that in contrast to the interactions between aged p,p'-DDE and sterilized HC soil, the interactions established between freshly added p,p'-DDE and sterilized FS soil were altered by γ-irradiation-induced secondary effects alone or in combination with earthworm inhabitation. Thus, although the soil treatment processes studied here should not drastically impact compound bioaccumulation, they should be considered in mechanistic studies where the qualitative and quantitative aspects of compound-soil (organic matter)-earthworm interactions are at the centre of attention.


Assuntos
Diclorodifenil Dicloroetileno/análise , Poluição Ambiental/análise , Oligoquetos/metabolismo , Poluentes do Solo/análise , Solo/química , Animais , Raios gama , Interações Hidrofóbicas e Hidrofílicas , Compostos Orgânicos/isolamento & purificação , Solventes/isolamento & purificação , Esterilização/métodos
9.
Sci Total Environ ; 624: 78-86, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247907

RESUMO

This work addresses the effect of biochar amendment to soil on contaminant sorption, bioavailability, and ecotoxicity. A distinction between positive primary amendment effects caused by reduced toxicity resulting from contaminant sorption, and negative secondary amendment effects of the biochars themselves was seen. Two biochars (one from high technology and one from low technology production processes) representing real world biochars were tested for the adsorption of pyrene, polychlorinated biphenyl (PCB) 52), and dichlorodiphenyldichloroethylene (p,p'-DDE). Sorption by both biochars was similar, both for compounds in single and mixed isotherms, in the presence and absence of soil. p,p'-DDE natively contaminated and spiked soils were amended with biochar (0, 1, 5, and 10%) and bioavailability, operationally defined bioaccessibility and ecotoxicity were assessed using polyethylene (PE), polymeric resin (XAD) and Folsomia candida, respectively. At the highest biochar dose (10%), bioavailability and bioaccessibility decreased by >37% and >41%, respectively, compared to unamended soils. Mortality of F. candida was not observed at any biochar dose, while reproductive effects were dose dependent. F. candida benefited from the reduction of p,p'-DDE bioavailability upon 1% and 5% biochar addition to contaminated soils while at 10% dose, these positive effects were nullified by biochar-induced toxicity. p,p'-DDE toxicity corrected for such secondary effects was predicted well by both PE uptake and XAD extraction.


Assuntos
Carvão Vegetal , Poluentes do Solo/química , Solo/química , Adsorção , Animais , Disponibilidade Biológica
10.
Sci Total Environ ; 613-614: 361-370, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28917175

RESUMO

Although large amounts of pesticides are used annually and a majority enters the soil to form short- or long-term residues, extensive soil surveys for currently used pesticides (CUPs) are scarce. To determine the status of CUPs' occurrence in arable land in Central Europe, 51 CUPs and 9 transformation products (TPs) were analysed in 75 arable soils in the Czech Republic (CR) several months after the last pesticide application. Moreover, two banned triazines (simazine and atrazine) and their TPs were analysed because of their frequent detection in CR waters. Multi-residue pesticide analysis on LC-MS/MS after soil QuEChERS extraction was used. The soils contained multiple pesticide residues frequently (e.g. 51% soils with ≥5 pesticides). The levels were also noticeable (e.g. 36% soils with ≥3 pesticides exceeding the threshold of 0.01mg/kg). After triazine herbicides (89% soils), conazole fungicides showed the second most frequent occurrence (73% soils) and also high levels (53% soils with total conazoles above 0.01mg/kg). Frequent occurrence was found also for chloroacetanilide TPs (25% of soils), fenpropidin (20%) and diflufenican (17%). With the exception of triazines' negative correlation to soil pH, no clear relationships were found between pesticide occurrence and soil properties. Association of simazine TPs with terbuthylazine and its target crops proved the frequent residues of this banned compound originate from terbuthylazine impurities. In contrast, frequent atrazine-2-hydroxy residue is probably a legacy of high atrazine usage in the past. The occurrence and levels of compounds were closely associated with their solubility, hydrophobicity and half-life. The results showed links to CR water-monitoring findings. This study represents the first extensive survey of multiple pesticide residues in Central European arable soils, including an insight into their relationships to site and pesticide properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA