Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Environ Res ; 232: 116315, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276976

RESUMO

With the increased global interest in sequestering carbon in soil, it is necessary to understand the composition of different pools of soil organic matter (SOM) that cycle over suitably short timeframes. To explore in detail the chemical composition of agroecologically relevant yet distinct fractions of SOM, the light fraction of SOM (LFOM), the 53-µm particulate organic matter (POM), and the mobile humic acid (MHA) fractions were sequentially extracted from agricultural soils and characterized using both 13C cross polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy and also Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The NMR results showed a decrease in the O-alkyl C region assigned to carbohydrates (51-110 ppm) and an increase in the aromatic region (111-161 ppm) proceeding from the LFOM to the POM and then to the MHA fraction. Similarly, based on the thousands of molecular formulae assigned to the peaks detected by FT-ICR-MS, condensed hydrocarbons were dominant only in the MHA, while aliphatic formulae were abundant in the POM and LFOM fractions. The molecular formulae of the LFOM and POM were mainly grouped in the high H/C lipid-like and aliphatic space, whereas a portion of the MHA compounds showed an extremely high (17-33, average of 25) double bond equivalent (DBE) values, corresponding to low H/C values of 0.3-0.6, representative of condensed hydrocarbons. The labile components appeared most pronounced in the POM (93% of formulae have H/C ≥ 1.5) similar to the LFOM (89% of formulae have H/C ≥ 1.5) but in contrast to the MHA (74% of formulae have H/C ≥ 1.5). The presence of both labile and recalcitrant components in the MHA fraction suggests that the stability and persistence of soil organic matter is influenced by a complex interaction of physical, chemical, and biological factors in soil. Understanding the composition and distribution of different SOM fractions can provide valuable insights into the processes that govern carbon cycling in soils, which can help inform strategies for sustainable land management and climate change mitigation.


Assuntos
Substâncias Húmicas , Solo , Solo/química , Substâncias Húmicas/análise , Agricultura , Carbono , Espectrometria de Massas , Material Particulado/análise
2.
Rapid Commun Mass Spectrom ; 34(15): e8801, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32246878

RESUMO

RATIONALE: Soil fulvic acids (FAs) are considered to be a highly reactive pool of soil organic matter. The functions of FAs are related to their chemical structures, the details of which are largely unidentified. To better understand them, Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) must be a useful but generally unused tool. METHODS: The structural properties of the components of five FA samples from a variety of soils were determined using FTICR-MS with negative-mode electrospray ionization. The peaks were assigned to molecular formulae, which were categorized into seven compound groups based on the H/C-O/C van Krevelen diagram. Ramp 13 C cross polarization/magic angle spinning nuclear magnetic resonance (NMR) spectra with phase-adjusted spinning side bands were also recorded to estimate the C composition. RESULTS: From FTICR-MS, molecular formulae were assigned to 1746-2605 peaks across the m/z range of 200-700. Those aligned in the lignin-like, tannin-like, and condensed aromatic regions of the van Krevelen diagram accounted for 49-58%, 4-20%, and 18-39% of the total peak magnitude, respectively. The proportion of the summed peak magnitudes that were detected in the lignin-like and condensed aromatic regions correlated positively to the aromatic C% as estimated by 13 C NMR. From Kendrick mass defect analysis using a carboxyl group, 94 molecular formulae were assigned to condensed aromatic acids, of which the maximum ring number was 4-7, as potential structures. CONCLUSIONS: A high proportion of lignin-like formulae and condensed aromatics, including those probably condensed aromatic acids with small ring numbers, as well as the existence of tannin-like formulae, which were generally lacking in soil humic acids, was suggested as a common feature of soil FAs.

3.
Environ Sci Technol ; 53(11): 6273-6281, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31038308

RESUMO

Acid mine drainage (AMD) formed from pyrite (iron disulfide) weathering contributes to ecosystem degradation in impacted waters. Solar irradiation has been shown to be an important factor in the biogeochemical cycling of iron in AMD-impacted waters, but its impact on dissolved organic matter (DOM) is unknown. With a typical AMD-impacted water (pH 2.7-3) collected from the Perry State Forest watershed in Ohio, we observed highly efficient (>80%) photochemical mineralization of DOM within hours in a solar simulator resembling twice summer sunlight at 40°N. We confirmed that the mineralization was initially induced by •OH formed from FeOH2+ photodissociation and was inhibited 2-fold by dissolved oxygen removal, suggesting the importance of both the photochemical reaction and oxygen involvement. Size exclusion chromatography and Fourier transform ion cyclotron resonance mass spectrometry elucidated that any remaining organic matter was comprised of smaller and highly aliphatic compounds. The quantitative and qualitative changes in DOM are likely to constitute an important component in regional carbon cycling and nutrient release and to influence downstream aquatic ecosystems in AMD-affected watersheds.


Assuntos
Ecossistema , Poluentes Químicos da Água , Mineração , Ohio , Luz Solar
4.
Environ Sci Technol ; 51(8): 4328-4337, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28328192

RESUMO

Snow overlays the majority of Antarctica and is an important repository of dissolved organic matter (DOM). DOM transformations by supraglacial microbes are not well understood. We use ultrahigh resolution mass spectrometry to elucidate molecular changes in snowpack DOM by in situ microbial processes (up to 55 days) in a coastal Antarctic site. Both autochthonous and allochthonous DOM is highly bioavailable and is transformed by resident microbial communities through parallel processes of degradation and synthesis. DOM thought to be of a more refractory nature, such as dissolved black carbon and carboxylic-rich alicyclic molecules, was also rapidly and extensively reworked. Microbially reworked DOM exhibits an increase in the number and magnitude of N-, S-, and P-containing formulas, is less oxygenated, and more aromatic when compared to the initial DOM. Shifts in the heteroatom composition suggest that microbial processes may be important in the cycling of not only C, but other elements such as N, S, and P. Microbial reworking also produces photoreactive compounds, with potential implications for DOM photochemistry. Refined measurements of supraglacial DOM and their cycling by microbes is critical for improving our understanding of supraglacial DOM cycling and the biogeochemical and ecological impacts of DOM export to downstream environments.


Assuntos
Espectrometria de Massas , Neve , Regiões Antárticas
5.
Anal Bioanal Chem ; 408(10): 2497-504, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26869345

RESUMO

The chemical characterization of dissolved organic matter (DOM) is critical for understanding carbon sequestration processes in soils. This work evaluated the use of electrospray ionization in both negative ion mode (ESI-) and positive ion mode (ESI+) for the characterization of DOM extracted from nine terrestrial sources using Fourier transform ion cyclotron mass spectrometry (FT-ICR-MS). The compositing of the peaks from ESI- to ESI+ modes increased the total assigned formulas from 23 to 63 % as compared to the traditional use of ESI- alone for DOM characterization. In general, there was a preferential increase in the number of assignments for the aliphatic and carbohydrate-like DOM components in the ESI+ mode. The soil-extracted DOM specifically exhibited greater increases in the aliphatic and carbohydrate-like DOM components with the combined use of ESI- and ESI+ modes likely due to the greater presence of aromatic DOM molecules that suppressed the ionization of these entities in ESI- mode. On the basis of these findings, we show that improved characterization of DOM is possible through the combined use of ESI- and ESI+ modes for FT-ICR-MS analysis, especially for samples rich in condensed aromatic and aromatic molecules.

6.
Environ Sci Technol ; 48(11): 6151-9, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24804819

RESUMO

Polar ice sheets hold a significant pool of the world's carbon reserve and are an integral component of the global carbon cycle. Yet, organic carbon composition and cycling in these systems is least understood. Here, we use ultrahigh resolution mass spectrometry to elucidate, at an unprecedented level, molecular details of dissolved organic matter (DOM) in Antarctic snow. Tens of thousands of distinct molecular species are identified, providing clues to the nature and sources of organic carbon in Antarctica. We show that many of the identified supraglacial organic matter formulas are consistent with material from microbial sources, and terrestrial inputs of vascular plant-derived materials are likely more important sources of organic carbon to Antarctica than previously thought. Black carbon-like material apparently originating from biomass burning in South America is also present, while a smaller fraction originated from soil humics and appears to be photochemically or microbially modified. In addition to remote continental sources, we document signals of oceanic emissions of primary aerosols and secondary organic aerosol precursors. The new insights on the diversity of organic species in Antarctic snowpack reinforce the importance of studying organic carbon associated with the Earth's polar regions in the face of changing climate.


Assuntos
Carbono/química , Substâncias Húmicas/análise , Camada de Gelo/química , Neve/química , Solo/química , Regiões Antárticas , Carbono/análise
7.
Environ Sci Technol ; 48(13): 7229-36, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24912044

RESUMO

Soil organic matter (SOM) is involved in many important soil processes such as carbon sequestration and the solubility of plant nutrients and metals. Ultrahigh resolution mass spectrometry was used to determine the influence of forest vegetation type and soil depth on the molecular composition of the water-extractable organic matter (WEOM) fraction. Contrasting the upper 0-5 cm with the 25-50 cm B horizon depth increment, the relative abundance of lipids and carbohydrates significantly increased, whereas condensed aromatics and tannins significantly decreased for the deciduous stand WEOM. No significant abundance changes were found for the coniferous stand DOM. Kendrick mass defect analysis showed that the WEOM of the 25-50 cm B horizon was depleted in oxygen-rich and higher mass components as compared to the 0-5 cm B horizon WEOM, suggesting that higher mass WEOM components with oxygen-containing functionality show greater reactivity in abiotic and/or biotic reactions. Furthermore, using an inoculated 14-day laboratory incubation study and multivariate ordination methods, we identified the WEOM components with H:C > 1.2 and O:C > 0.5 as being correlated most strongly with biodegradability. Our findings highlight the importance of understanding soil depth differences for various forest types in the chemical composition of SOM and the processes governing SOM production and transformations to fully understand the ecological implications of changes in forest composition and function in a changing climate.


Assuntos
Compostos Orgânicos/análise , Solo/química , Árvores/química , Biodegradação Ambiental , Carbono/análise , Ciclotrons , Análise de Fourier , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Peso Molecular , New England , Nitrogênio/análise , Ozônio/química , Solubilidade , Água/química
8.
Anal Chem ; 85(8): 3895-902, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23472832

RESUMO

Two-dimensional (2D) correlation analysis was applied to 20 Fourier transform ion cyclotron resonance mass spectra (FTICR-MS) of ultrafiltered dissolved organic matter samples from a salinity transect of the lower Chesapeake Bay. We were able to investigate the chemical changes in the dissolved organic matter pool at the molecular level and classify the individual peaks based on their biogeochemical reactivity. The power of this technique is its ability to be used on either the presence/absence of the individual peaks or their normalized magnitudes. The presence or absence of the peaks are utilized to identify the reactivity and correlation between peaks that plot in different regions of the van Krevelen diagram, whereas the normalized magnitudes are used to correlate the changes among individual peaks. One of the promising advantages of 2D correlation of FTICR-MS data is the ability to associate the variations of the individual peaks with the changes in the functional groups that are measured by other spectroscopic techniques. This approach takes us one step further from identifying molecular formulas to proposing chemical structures.

9.
Rapid Commun Mass Spectrom ; 27(22): 2559-2568, 2013 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-24123645

RESUMO

RATIONALE: The green fraction of soil humic acids (HAs), designated Pg, contains 4,9-dihydroxyperylene-3,10-quinone (DHPQ) as a chromophore. Although various naturally occurring DHPQ derivatives are known to occur and Pg-like absorption is observed in the UV-visible spectra of HAs from various types of soils worldwide, the chemical structure of Pg is still unknown. METHODS: For a better understanding of the chemical composition of Pg, the pre-isolated (crude Pg) and purified Pg (G2) samples and three soil HAs with different degrees of humification were analyzed using negative-mode electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) at 12 Tesla. The Pg samples were characterized using H/C-O/C ratios and based on the type and magnitude of the molecular formulae having DHPQ or related compounds as a potential structure. RESULTS: The H/C-O/C diagram indicated that most of the lipids, proteins, other aliphatics, and lignin-like components were removed, while condensed aromatic components were concentrated during the purification process of crude Pg to G2 using Sephadex G-50. More than 27 molecular formulae resembling DHPQ, DHPQ substituted with varying numbers of carboxyl and/or hydroxyl groups, and phenyl-DHPQ derivatives were identified in both Pg samples. The peak magnitudes of these formulae in G2 (accounting for 40% of the total assigned magnitude) were greater than that in the crude Pg (21%). Most of the 27 molecular formulae were also detected in the three soil HAs, suggesting a common existence of Pg-related compounds in various soil HAs. CONCLUSIONS: The important molecular formulae of Pg components were estimated utilizing FTICRMS. Copyright © 2013 John Wiley & Sons, Ltd.

10.
Environ Sci Technol ; 47(23): 13294-302, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24180747

RESUMO

Biochar has gained significant interest worldwide for its potential use as both a carbon sequestration technique and soil amendment. Recently, research has shown that pinewood-derived biochar water extracts inhibited the growth of aquatic photosynthetic microorganisms, both prokaryotic and eukaryotic algae, while chicken litter- and peanut shell-derived biochar water extracts showed no growth inhibition. With the use of electrodialysis, the pinewood-derived biochar water extract is separated into 3 fractions (anode-isolated, center chamber retained, and cathode-isolated substances) all with varying toxic effects. Because of its ultrahigh resolution and mass precision, electrospray ionization (ESI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is utilized in this study to analyze biochar water extracts at a molecular level to enhance our understanding of the toxic nature of pinewood-derived biochar water extracts as compared to benign peanut shell-derived biochar water extracts. The molecular composition of pinewood-derived biochar water extracts shows unique carbohydrate ligneous components and sulfur containing condensed ligneous components that are both absent from the peanut shell water extracts and more prevalent in the anode-isolated substances. Using Kendrick mass defect analysis, we also determine that the most likely inhibitor species contain carboxyl and hydroxyl homologous series, both of which are characteristic functional groups hypothesized in our previous research for the inhibitor species. We have suggested that inhibition of aquatic photosynthetic microorganism growth is most likely due to degraded lignin-like species rich in oxygen containing functionalities. From the study conducted here, we show the potential of ultrahigh resolution FTICR-MS as a valuable analytical technique for determining whether certain biochars are safe and benign for use as carbon sequestration and soil amendment.


Assuntos
Arachis/química , Sequestro de Carbono , Carvão Vegetal/química , Misturas Complexas/análise , Pinus/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Análise de Fourier , Água
11.
Anal Methods ; 15(40): 5390-5400, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37807701

RESUMO

With the advancements in science and technology, datasets become larger and more multivariate, which warrants the need for programming tools for fast data processing and multivariate statistical analysis. Here, the MATLAB-based Toolbox for Environmental Research "TEnvR" (pronounced "ten-ver") is introduced. This novel toolbox includes 44 open-source codes for automated data analysis from a multitude of techniques, such as ultraviolet-visible, fluorescence, and nuclear magnetic resonance spectroscopies, as well as from ultrahigh resolution mass spectrometry. Provided are codes for processing data (e.g., spectral corrections, formula assignment), visualization of figures, calculation of metrics, multivariate statistics, and automated work-up of large datasets. TEnvR allows for efficient data analysis with minimal "by-hand" manual work by the user, which allows scientists to do research more efficiently. This manuscript is supplemented with a detailed tutorial, example data, and screenshots, which collectively provide instructions on how to use all codes. TEnvR is novice-friendly and experience in programming with MATLAB is not required. TEnvR fulfills the need for a concise MATLAB-based toolbox for working with environmental data and will be updated annually to keep pace with the latest advances and needs for computational work in the environmental sciences.

12.
Anal Chem ; 84(21): 9184-91, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23075323

RESUMO

This study describes a method for evaluating the reproducibility of replicate mass spectra acquired for complex natural organic matter (NOM) samples analyzed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, with regard to both peak detection and peak magnitude. Because studies of NOM characterization utilize not only the emergence and disappearance of peaks but also changes in relative peak magnitude, it is important to establish that the differences between samples are significantly larger than those between sample replicates. Here, a method is developed for correcting strict signal-to-noise thresholds, along with a new scheme for assessing the reproducibility of peak magnitudes. Furthermore, a systematic approach for discerning when the comparison of samples by the presence or absence of peaks is appropriate and when it is necessary to compare based on the relative magnitude of the peaks is presented. A variety of 10 different types of NOM samples are analyzed in duplicate or triplicate instrumental injections or experimental extractions. A framework for these procedures is provided, and acceptable reproducibility levels are recommended.

13.
Proc Natl Acad Sci U S A ; 105(35): 12932-7, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18725643

RESUMO

The aromatic polymer lignin protects plants from most forms of microbial attack. Despite the fact that a significant fraction of all lignocellulose degraded passes through arthropod guts, the fate of lignin in these systems is not known. Using tetramethylammonium hydroxide thermochemolysis, we show lignin degradation by two insect species, the Asian longhorned beetle (Anoplophora glabripennis) and the Pacific dampwood termite (Zootermopsis angusticollis). In both the beetle and termite, significant levels of propyl side-chain oxidation (depolymerization) and demethylation of ring methoxyl groups is detected; for the termite, ring hydroxylation is also observed. In addition, culture-independent fungal gut community analysis of A. glabripennis identified a single species of fungus in the Fusarium solani/Nectria haematococca species complex. This is a soft-rot fungus that may be contributing to wood degradation. These results transform our understanding of lignin degradation by wood-feeding insects.


Assuntos
Comportamento Alimentar , Isópteros/metabolismo , Lignina/metabolismo , Madeira/metabolismo , Animais , Sistema Digestório/microbiologia , Hidroxilação , Isópteros/microbiologia , Lignina/química , Metilação , Dados de Sequência Molecular , Oxirredução
14.
Environ Sci Technol ; 44(19): 7576-82, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20836547

RESUMO

We apply multivariate statistics to explore the large data sets encountered from Fourier transform ion cyclotron resonance mass spectra of dissolved organic matter (DOM). Molecular formula assignments for the individual constituents of DOM are examined by hierarchal cluster analysis (HCA) and principal component analysis (PCA), to measure the relationships between numerous DOM samples. We compare two approaches: (1) using averages of elemental ratios and double bond equivalents calculated from the formulas, and (2) employing individual formulas and either their presence/absence or relative magnitude in each sample. With approach 2, PCA deciphers which of the thousands of formulas are significant to particular samples, and then a van Krevelen diagram highlights what types of compounds are molecular signatures to the samples. Our dual approach, especially approach 2, allows for complex data sets to be more easily interpreted, aiding in the characterization of DOM from various sources. By applying this methodology, clear trends can be delineated, trends that are not apparent from currently employed methods. Terrestrial DOM contains various lignin-derived compounds, tannins, and condensed aromatics. Marine DOM contains aliphatic compounds with heteroatom functionalities, as well as lignin-like molecules.


Assuntos
Espectrometria de Massas/métodos , Análise por Conglomerados , Análise de Fourier , Análise de Componente Principal
15.
Environ Sci Technol ; 44(22): 8594-8600, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20958002

RESUMO

The chemical properties of organic matter affect important soil processes such as speciation, solubilization, and transport of plant nutrients and metals. This work uses ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to determine the molecular composition of three organic matter fractions of soils and aqueous extracts of crop biomass. Comparison of the van Krevelen plots allowed tracking the changes in organic matter with increasing humification. Aqueous plant biomass extracts contain a diverse mixture of lipids, proteins, and lignins. Soil aqueous extracts were marked by increases in lignin and carbohydrate components and decrease in the protein component as compared to the plant extract. Refractory humic acid fractions were marked by decrease in the lignin component and increases in the lipid and condensed aromatic components. The multivariate indicator species analysis was used to identify marker components of the four organic matter types investigated. The plant extract group had 772 marker components compared to 237 for soil aqueous extract, 92 for mobile humic acid, and 418 for calcium humic acid. This study demonstrates that ultrahigh resolution mass spectrometry and multivariate methods can be used to identify marker components to gain a molecular-scale description and understanding of C dynamics.


Assuntos
Biomassa , Plantas/química , Solo/química , Análise de Fourier , Espectrometria de Massas por Ionização por Electrospray
16.
J Mass Spectrom ; 54(8): 655-666, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31177597

RESUMO

Soluble extractives in wood function to protect living trees from destructive agents and also contribute to wood color and fragrance. Some extractive components have biological activities with medical applications. They also play important roles in wood processing and related applications. To increase the knowledge of wood chemistry, maple and oak were extracted by water. Ultraviolet/visible (UV/vis) spectroscopy indicated the presence of a phenolic compound, resorcinol, in maple extractives having higher molecular mass and more aromatic components than oak extractives. Negative and positive electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) identified thousands of formulas in the two samples in the m/z range of 200 to 800. They mainly fall into the lignin-like, carbohydrate-like, and tannin-like compound categories. The top 25 peaks (ie, formulas) with the highest relative magnitude in negative ESI represented nearly 50% of the summed total spectral magnitude of all formulas assigned in the maple and oak extractives. Furthermore, the base peak (ie, most abundant peak) accounted for about 14% of the total abundance in each wood sample. Literature comparisons identified 17 of 20 formulas in the top five peaks of the four spectra as specific bioactive compounds in trees and other plants, implying the potential to explore utilization of maple and oak extractives for functional and medicinal applications. The various profiling of the top 25 peaks from the two samples also suggested the possible application of FT-ICR-MS for detecting chemical markers useful in profiling and identification of wood types and sources.

17.
J Mass Spectrom ; 42(5): 559-74, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17474116

RESUMO

Mass spectrometry has recently played a key role in the understanding of natural organic matter (NOM) by providing molecular-level details about its composition. NOM, a complex assemblage of organic molecules present in natural waters and soils/sediments, has the ability to bind and transport anthropogenic materials. An improved understanding of its composition is crucial in order to understand how pollutants interact with NOM and how NOM cycles through global carbon cycles. In the past, low-resolution (>3000) mass analyzers have offered some insights into the structure of NOM, but emerging ultrahigh resolution (>200,000) techniques such as electrospray ionization (ESI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) have significantly advanced our knowledge of NOM chemistry. Here, a review of the recent literature on the advancements of NOM characterization and the applications of mass spectrometry to this central task is presented. Various methods for the analysis and display of the extremely complex mass spectra, such as the van Krevelen diagram and Kendrick mass defect analysis, are discussed. We also review tandem mass spectrometry techniques employed to gain structural information about NOM components. Finally, we show how ESI-FT-ICR-MS has been applied to examine specific issues that are important to the NOM scientific community, such as NOM reactivity, transport and fate, degradation, and existence of components, which are indicators of NOM origin. In general, ultrahigh resolution provided by FT-ICR-MS is essential for the complete separation of the thousands of peaks present in the complex NOM mixture and will clearly lead to additional future advancements in the areas of aquatic, soil, and analytical chemistry.


Assuntos
Produtos Biológicos/análise , Poluentes do Solo/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Poluentes da Água/análise
18.
Environ Sci Process Impacts ; 16(4): 721-31, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24522748

RESUMO

Increasing wildfire activity in the Alaskan Arctic may result in new sources of black carbon (BC) to arctic watersheds. Black carbon, primarily comprised of condensed aromatics, is one of the most chemically recalcitrant fractions of organic carbon. However, lateral transfer of particulate and dissolved BC from soils to sunlit surface waters is increasingly suggested to result in the photochemical mineralization of BC to CO2. While sunlight can also partially photooxidize aromatic compounds in surface waters, producing compounds with a higher O/C than the parent compound, this degradation pathway has not yet been identified for either particulate or dissolved BC. To address knowledge gaps on the photochemical degradation of particulate and dissolved BC, we quantified the complete and partial photooxidation of particulate and dissolved BC derived from arctic biomass as photochemical CO2 production and O2 consumption relative to dark controls. Concurrently, we investigated shifts in the chemical composition of dissolved BC following exposure to sunlight using UV-visible absorbance, fluorescence spectroscopy, and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The chemical and physical properties of BC produced from charring arctic biomass were similar to BC produced by wildfires in terrestrial ecosystems based on elemental analysis and FT-ICR MS. Based on the concentration of light-absorbing carbon in each fraction, dissolved BC was disproportionately more susceptible to complete and partial photooxidation compared to particulate BC. Upon exposure to sunlight, the predominant fate of dissolved BC was partial photooxidation, while a smaller fraction of dissolved BC was photomineralized to CO2. Shifts in both the optical and mass spectrometry spectra suggested that condensed aromatics likely comprised the fraction of dissolved BC that was completely and partially photooxidized. To further refine the meaning of sunlight as a sink for aquatic BC, the reactivity of partially oxidized photoproducts of BC in the aquatic organic carbon pool must be determined.


Assuntos
Água Doce/química , Processos Fotoquímicos , Fuligem/química , Poluentes Químicos da Água/química , Dióxido de Carbono/análise , Dióxido de Carbono/química , Modelos Químicos , Oxirredução , Fuligem/análise , Luz Solar , Poluentes Químicos da Água/análise
19.
Environ Sci Technol ; 43(20): 7797-802, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19921896

RESUMO

The composition and structure of freshly formed oligomers in alpha- and beta- pinene SOA are studied with high performance mass spectrometry to provide insight into the SOA formation mechanism. Van Krevelen plots (H:C ratio vs O:C ratio) are interpreted in the context of distinct structural domains that correspond to separate oligomer formation routes. The domain containing most of the signal intensity encompasses elemental formulas that correspond to oligomerization reactions of intermediates and/or stable molecule monomers produced by ozonolysis of the precursor. While oligomers involving reactive intermediates from the hydroperoxide channel dominate the product distribution, products are also observed that uniquely map to the stable Criegee intermediate and/ or combinations of stable molecule monomers. A second domain encompasses molecules having lower H:C ratios but similar O:C ratios to the first domain. Many of the products observed in this domain have double bond equivalents greater than the maximum number possible when forming dimers by standard reaction mechanisms and are interpreted in the context of repeated self-reactions of alkoxy/peroxy radicals. A third domain encompasses molecules having very high H:C and O:C ratios consistent with polymerization of formaldehyde and/or acetaldehyde. These domains remain distinguishable from experiment to experiment and among different extraction solvents (50/50 methanol-water, 50/50 acetonitrile-water,100% water).


Assuntos
Monoterpenos/química , Ozônio/química , Aerossóis , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA