RESUMO
Tissue injury, including extracellular matrix (ECM) degradation, is a hallmark of group A Streptococcus (GAS) skin infection and is partially mediated by M proteins which possess lectin-like properties. Hyaluronic acid is a glycosaminoglycan enriched in the cutaneous ECM, yet an interaction with M proteins has yet to be explored. This study revealed that hyaluronic acid binding was conserved across phylogenetically diverse M proteins, mediated by RR/SR motifs predominantly localized in the C repeat region. Keratinocyte wound healing was decreased through the recruitment of hyaluronic acid by M proteins in an M type-specific manner. GAS strains 5448 (M1 serotype) and ALAB49 (M53 serotype) also bound hyaluronic acid via M proteins, but hyaluronic acid could increase bacterial adherence independently of M proteins. The identification of host-pathogen mechanisms that affect ECM composition and cell repair responses may facilitate the development of nonantibiotic therapeutics that arrest GAS disease progression in the skin.
Assuntos
Ácido Hialurônico , Streptococcus pyogenes , Ácido Hialurônico/metabolismo , Streptococcus pyogenes/metabolismo , Humanos , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Queratinócitos/metabolismo , Queratinócitos/microbiologia , Proteínas de Transporte/metabolismo , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Motivos de Aminoácidos , Cicatrização , Serina/metabolismo , Aderência Bacteriana , Arginina/metabolismo , Ligação ProteicaRESUMO
Allogeneic haematopoietic stem cell transplantation (HSCT) leads to the establishment of graft-versus-leukaemia (GVL) immunity, but in many cases also results in the development of graft-versus-host disease (GVHD). This study aimed to determine if P2X7 antagonism using Brilliant Blue G (BBG) could improve the beneficial effects of post-transplant cyclophosphamide (PTCy) in a humanised mouse model of GVHD, without comprising GVL immunity. NOD.Cg-Prkdcscid Il2rgtm1Wjl (NSG) mice were injected with human peripheral blood mononuclear cells (PBMCs) (Day 0), then with cyclophosphamide (33 mg/kg) on Days 3 and 4, and with BBG (50 mg/kg) (or saline) on Days 0-10. PTCy with BBG reduced clinical GVHD development like that of PTCy alone. However, histological analysis revealed that the combined treatment reduced liver GVHD to a greater extent than PTCy alone. Flow cytometric analyses revealed that this reduction in liver GVHD by PTCy with BBG corresponded to an increase in human splenic CD39+ Tregs and a decrease in human serum interferon-γ concentrations. In additional experiments, humanised NSG mice, following combined treatment, were injected with human THP-1 acute myeloid leukaemia cells on Day 14. Flow cytometric analyses of liver CD33+ THP-1 cells showed that PTCy with BBG did not mitigate GVL immunity. In summary, PTCy combined with BBG can reduce GVHD without compromising GVL immunity. Future studies investigating P2X7 antagonism in combination with PTCy may lead to the development of novel treatments that more effectively reduce GVHD in allogeneic HSCT patients without promoting leukaemia relapse.
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia , Corantes de Rosanilina , Humanos , Animais , Camundongos , Leucócitos Mononucleares , Camundongos Endogâmicos NOD , Recidiva Local de Neoplasia/tratamento farmacológico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/métodos , Ciclofosfamida/uso terapêutico , Leucemia/tratamento farmacológico , Estudos RetrospectivosRESUMO
Graft-versus-host disease (GVHD) is a life-threatening complication following donor hematopoietic stem cell transplantation, where donor T cells damage host tissues. This study investigated the effect of tocilizumab (TOC) combined with post-transplant cyclophosphamide (PTCy) on immune cell engraftment and GVHD development in a humanized mouse model. NOD-scid-IL2Rγnull (NSG) mice were injected intraperitoneally with 2 × 107 human (h) peripheral blood mononuclear cells and cyclophosphamide (33 mg kg-1 ) or saline on days 3 and 4, then TOC or control antibody (0.5 mg mouse-1 ) twice weekly for 28 days. Mice were monitored for clinical signs of GVHD for either 28 or 70 days. Spleens and livers were assessed for human leukocyte subsets, and serum cytokines and tissue histology were analyzed. In the short-term model (day 28), liver and lung damage were reduced in PTCy + TOC compared with control mice. All groups showed similar splenic hCD45+ leukocyte engraftment (55-60%); however, PTCy + TOC mice demonstrated significantly increased (1.5-2-fold) splenic regulatory T cells. Serum human interferon gamma was significantly reduced in PTCy + TOC compared with control mice. Long-term (day 70), prolonged survival was similar in PTCy + TOC (median survival time, > 70 days) and PTCy mice (median survival time, 56 days). GVHD onset was significantly delayed in PTCy + TOC, compared with TOC or control mice. Notably, natural killer cells were reduced (77.5%) in TOC and PTCy + TOC mice. Overall, combining PTCy with TOC increases regulatory T cells and reduces clinical signs of early GVHD, but does not improve long-term survival compared with PTCy alone.
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Animais , Camundongos , Linfócitos T Reguladores/patologia , Leucócitos Mononucleares , Camundongos Endogâmicos NOD , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Células Matadoras Naturais/patologia , Camundongos SCIDRESUMO
Since its inception by the late Geoffrey Burnstock in the early 1970s [...].
Assuntos
Fenômenos Biológicos , Receptores Purinérgicos , Receptores Purinérgicos/fisiologia , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/fisiologiaRESUMO
The P2X7 receptor is a trimeric ligand-gated cation channel activated by extracellular adenosine 5'-triphosphate. The study of animals has greatly advanced the investigation of P2X7 and helped to establish the numerous physiological and pathophysiological roles of this receptor in human health and disease. Following a short overview of the P2X7 distribution, roles and functional properties, this article discusses how animal models have contributed to the generation of P2X7-specific antibodies and nanobodies (including biologics), recombinant receptors and radioligands to study P2X7 as well as to the pharmacokinetic testing of P2X7 antagonists. This article then outlines how mouse and rat models have been used to study P2X7. These sections include discussions on preclinical disease models, polymorphic P2X7 variants, P2X7 knockout mice (including bone marrow chimeras and conditional knockouts), P2X7 reporter mice, humanized P2X7 mice and P2X7 knockout rats. Finally, this article reviews the limited number of studies involving guinea pigs, rabbits, monkeys (rhesus macaques), dogs, cats, zebrafish, and other fish species (seabream, ayu sweetfish, rainbow trout and Japanese flounder) to study P2X7.
Assuntos
Receptores Purinérgicos P2X7 , Peixe-Zebra , Camundongos , Ratos , Humanos , Animais , Cães , Cobaias , Coelhos , Receptores Purinérgicos P2X7/genética , Macaca mulatta , Modelos Animais , Camundongos Knockout , Trifosfato de AdenosinaRESUMO
The ectonucleotidases CD39 and CD73 are present on immune cells and play important roles in cancer progression by suppressing antitumour immunity. As such, CD39 and CD73 on peripheral blood mononuclear cells (PBMCs) are emerging as potential biomarkers to predict disease outcomes and treatment responses in cancer patients. This study aimed to examine T and B cells, including CD39 and CD73 expressing subsets, by flow cytometry in PBMCs from 28 patients with head and neck squamous cell carcinoma (HNSCC) and to assess the correlation with the treatment modality, human papillomavirus (HPV) status, and relapse-free survival (RFS). The PBMCs were examined pre-, mid-, and post-radiotherapy with concurrent cisplatin chemotherapy or anti-epidermal growth factor receptor antibody (cetuximab) therapy. Combination radiotherapy caused changes to T and B cell populations, including CD39 and CD73 expressing subsets, but no such differences were observed between concurrent chemotherapy and cetuximab. Pretreatment PBMCs from HPV+ patients contained increased proportions of CD39-CD73-CD4+ T cells and reduced proportions of CD39-/+CD73+CD4+ T cells compared to the equivalent cells from HPV- patients. Notably, the pretreatment CD4+:CD8+ T cell ratios and CD39+CD73+CD19+ B cell proportions below the respective cohort medians corresponded with an improved RFS. Collectively, this study supports the notion that CD39 and CD73 may contribute to disease outcomes in HNSCC patients and may assist as biomarkers, either alone or as part of immune signatures, in HNSCC. Further studies of CD39 and CD73 on PBMCs from larger cohorts of HNSCC patients are warranted.
Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Cetuximab , Leucócitos Mononucleares , Recidiva Local de Neoplasia , Linfócitos T CD8-Positivos , Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19 , Doença Crônica , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Linfócitos T CD4-PositivosRESUMO
Mutant superoxide dismutase 1 (SOD1) can be constitutively released from motor neurons and transmitted to naïve motor neurons to promote the progression of amyotrophic lateral sclerosis (ALS). However, the biological impacts of this process and the precise mechanisms of SOD1 release remain to be fully resolved. Using biochemical and fluorescent techniques, this study aimed to determine if P2X7 receptor activation could induce mutant SOD1 release from motor neurons and whether this released SOD1 could be transmitted to motor neurons or microglia to mediate effects associated with neurodegeneration in ALS. Aggregated SOD1G93A, released from murine NSC-34 motor neurons transiently transfected with SOD1G93A, could be transmitted to naïve NSC-34 cells and murine EOC13 microglia to induce endoplasmic reticulum (ER) stress and tumour necrosis factor-alpha (TNFα) release, respectively. Immunoblotting revealed NSC-34 cells expressed P2X7. Extracellular ATP induced cation dye uptake into these cells, which was blocked by the P2X7 antagonist AZ10606120, demonstrating these cells express functional P2X7. Moreover, ATP induced the rapid release of aggregated SOD1G93A from NSC-34 cells transiently transfected with SOD1G93A, a process blocked by AZ10606120 and revealing a role for P2X7 in this process. ATP-induced SOD1G93A release coincided with membrane blebbing. Finally, aggregated SOD1G93A released via P2X7 activation could also be transmitted to NSC-34 and EOC13 cells to induce ER stress and TNFα release, respectively. Collectively, these results identify a novel role for P2X7 in the prion-like propagation of SOD1 in ALS and provide a possible explanation for the therapeutic benefits of P2X7 antagonism previously observed in ALS SOD1G93A mice.
Assuntos
Esclerose Lateral Amiotrófica , Receptores Purinérgicos P2X7 , Superóxido Dismutase-1 , Animais , Camundongos , Trifosfato de Adenosina/farmacologia , Esclerose Lateral Amiotrófica/patologia , Modelos Animais de Doenças , Camundongos Transgênicos , Neurônios Motores/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Superóxido Dismutase-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The adenosine 5'-triphosphate-gated P2X4 receptor channel is a promising target in neuroinflammatory disorders, but the ability to effectively target these receptors in models of neuroinflammation has presented a constant challenge. As such, the exact role of P2X4 receptors and their cell signalling mechanisms in human physiology and pathophysiology still requires further elucidation. To this end, research into the molecular mechanisms of P2X4 receptor activation, modulation, and inhibition has continued to gain momentum in an attempt to further describe the role of P2X4 receptors in neuroinflammation and other disease settings. Here we provide an overview of the current understanding of the P2X4 receptor, including its expression and function in cells involved in neuroinflammatory signalling. We discuss the pharmacology of P2X4 receptors and provide an overview of P2X4-targeting molecules, including agonists, positive allosteric modulators, and antagonists. Finally, we discuss the use of P2X4 receptor modulators and antagonists in models of neuroinflammatory cell signalling and disease.
Assuntos
Trifosfato de Adenosina , Receptores Purinérgicos P2X4 , Trifosfato de Adenosina/metabolismo , Humanos , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Transdução de SinaisRESUMO
Graft-versus-host disease (GVHD) is a major complication of allogeneic haematopoietic stem cell transplantation (allo-HSCT) that develops when donor T cells in the graft become reactive against the host. Post-transplant cyclophosphamide (PTCy) is increasingly used in mismatched allo-HSCT, but how PTCy impacts donor T cells and reduces GVHD is unclear. This study aimed to determine the effect of PTCy on reactive human donor T cells and GVHD development in a preclinical humanized mouse model. Immunodeficient NOD-scid-IL2Rγnull mice were injected intraperitoneally (i.p.) with 20 × 106 human peripheral blood mononuclear cells stained with carboxyfluorescein succinimidyl ester (CFSE) (day 0). Mice were subsequently injected (i.p.) with PTCy (33 mg kg-1 ) (PTCy-mice) or saline (saline-mice) (days 3 and 4). Mice were assessed for T-cell depletion on day 6 and monitored for GVHD for up to 10 weeks. Flow cytometric analysis of livers at day 6 revealed lower proportions of reactive (CFSElow ) human (h) CD3+ T cells in PTCy-mice compared with saline-mice. Over 10 weeks, PTCy-mice showed reduced weight loss and clinical GVHD, with prolonged survival and reduced histological liver GVHD compared with saline-mice. PTCy-mice also demonstrated increased splenic hCD4+ :hCD8+ T-cell ratios and reduced splenic Tregs (hCD4+ hCD25+ hCD127lo ) compared with saline-mice. This study demonstrates that PTCy reduces GVHD in a preclinical humanized mouse model. This corresponded to depletion of reactive human donor T cells, but fewer human Tregs.
Assuntos
Ciclofosfamida/imunologia , Doença Enxerto-Hospedeiro/imunologia , Linfócitos T Reguladores/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Leucócitos Mononucleares/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Doadores de Tecidos , Transplante Homólogo/métodosRESUMO
Graft-versus-host disease (GVHD) is a severe inflammatory response arising from allogeneic haematopoietic stem cell transplantation. Previous studies revealed that antagonism of the P2X7 receptor with Brilliant Blue G (BBG) reduced liver GVHD but did not alter clinical GVHD in a humanised mouse model. Therefore, the present study aimed to trial a modified injection regime using more frequent dosing of BBG to improve outcomes in this model of GVHD. NOD-scid IL2Rγnull (NSG) mice were injected intraperitoneally (i.p.) with 10 × 106 human peripheral blood mononuclear cells (hPBMCs) (day 0), then daily with BBG (50 mg/kg) or saline (days 0-10). BBG significantly reduced clinical score, mortality and histological GVHD compared with saline treatment (endpoint). BBG significantly increased proportions of human regulatory T cells (Tregs) and human B cells and reduced serum human interferon-γ compared with saline treatment prior to development of clinical GVHD (day 21). To confirm the therapeutic benefit of P2X7 antagonism, NSG mice were injected i.p. with 10 × 106 hPBMCs (day 0), then daily with pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) (300 mg/kg) or saline (days 0-10). PPADS increased human Treg proportions compared with saline treatment (day 21), but potential clinical benefits were confounded by increased weight loss with this antagonist. To investigate the role of P2X7 antagonism on Treg survival, hPBMCs were cultured in reduced serum conditions to promote cell death. BBG increased proportions of Tregs (and B cells) compared with saline under these conditions. In conclusion, P2X7 antagonism reduces clinical and histological GVHD in a humanised mouse model corresponding to an increase in human Tregs.
Assuntos
Doença Enxerto-Hospedeiro/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/efeitos dos fármacos , Corantes de Rosanilina/farmacologia , Adulto , Animais , Linfócitos B , Modelos Animais de Doenças , Feminino , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Leucócitos Mononucleares , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Fosfato de Piridoxal/administração & dosagem , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Corantes de Rosanilina/administração & dosagem , Linfócitos T Reguladores/efeitos dos fármacosRESUMO
Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for blood cancers and other haematological disorders. However, allo-HSCT leads to graft-versus-host disease (GVHD), a severe and often lethal immunological response, in the majority of transplant recipients. Current therapies for GVHD are limited and often reduce the effectiveness of allo-HSCT. Therefore, pro- and anti-inflammatory factors contributing to disease need to be explored in order to identify new treatment targets. Purinergic signalling plays important roles in haematopoiesis, inflammation and immunity, and recent evidence suggests that it can also affect haematopoietic stem cell transplantation and GVHD development. This review provides a detailed assessment of the emerging roles of purinergic receptors, most notably P2X7, P2Y2 and A2A receptors, and ectoenzymes, CD39 and CD73, in GVHD.
Assuntos
Doença Enxerto-Hospedeiro/terapia , Neoplasias Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Receptores Purinérgicos/metabolismo , Transdução de Sinais , Animais , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/patologia , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Humanos , Transplante HomólogoRESUMO
The ubiquitous calpains, calpain-1 and -2, play important roles in Ca2+-dependent membrane repair. Mechanically active tissues like skeletal muscle are particularly reliant on mechanisms to repair and remodel membrane injury, such as those caused by eccentric damage. We demonstrate that calpain-1 and -2 are master effectors of Ca2+-dependent repair of mechanical plasma membrane scrape injuries, although they are dispensable for repair/removal of small wounds caused by pore-forming agents. Using CRISPR gene-edited human embryonic kidney 293 (HEK293) cell lines, we established that loss of both calpains-1 and -2 (CAPNS1-/-) virtually ablates Ca2+-dependent repair of mechanical scrape injuries but does not affect injury or recovery from perforation by streptolysin-O or saponin. In contrast, cells with targeted knockout of either calpain-1 (CAPN1-/-) or -2 (CAPN2-/-) show near-normal repair of mechanical injuries, inferring that both calpain-1 and calpain-2 are equally capable of conducting the cascade of proteolytic cleavage events to reseal a membrane injury, including that of the known membrane repair agent dysferlin. A severe muscular dystrophy in a murine model with skeletal muscle knockout of Capns1 highlights vital roles for calpain-1 and/or -2 for health and viability of skeletal muscles not compensated for by calpain-3 (CAPN3). We propose that the dystrophic phenotype relates to loss of maintenance of plasma membrane/cytoskeletal networks by calpains-1 and -2 in response to directed and dysfunctional Ca2+-signaling, pathways hyperstimulated in the context of membrane injury. With CAPN1 variants associated with spastic paraplegia, a severe dystrophy observed with muscle-specific loss of calpain-1 and -2 activity identifies CAPN2 and CAPNS1 as plausible candidate neuromuscular disease genes.
Assuntos
Calpaína/deficiência , Membrana Celular/enzimologia , Músculo Esquelético/enzimologia , Distrofia Muscular do Cíngulo dos Membros/enzimologia , Distrofia Muscular Animal/enzimologia , Animais , Proteínas de Bactérias/farmacologia , Sinalização do Cálcio , Calpaína/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/patologia , Modelos Animais de Doenças , Disferlina/deficiência , Disferlina/genética , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Knockout , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Saponinas/farmacologia , Índice de Gravidade de Doença , Estreptolisinas/farmacologiaRESUMO
Regulatory T cells (Tregs) protect against graft-versus-host disease (GVHD), a life-threatening complication of allogeneic hematopoietic stem cell transplantation. The ectoenzyme CD39 is important for increasing the immunosuppressive function of Tregs. The rs10748643 (A â G) single-nucleotide polymorphism (SNP) in intron 1 of the human ENTPD1 gene is associated with increased proportions of CD39+ Tregs. This study aimed to determine whether the rs10748643 SNP corresponded to increased proportions of CD39+ Tregs in an Australian donor population, and whether this SNP influences clinical GVHD in a humanized mouse model. Donors were genotyped for the rs10748643 SNP by Sanger sequencing, and the proportion of CD39+ T cells in donor peripheral blood was determined by flow cytometry. Donors encoding the G allele (donorsAG/GG ) demonstrated higher proportions of CD39+ CD3+ CD4+ CD25+ CD127lo Tregs, but not CD39+ CD3+ CD8+ T cells or CD39+ CD3+ CD4+ conventional T cells, compared with donors homozygous for the A allele (donorsAA ). NOD-SCID-IL2Rγnull mice were injected with human peripheral blood mononuclear cells from either donorsAA (hCD39AA mice) or donorsAG/GG (hCD39AG/GG mice). hCD39AG/GG mice demonstrated significantly greater weight loss and GVHD clinical scores, and significantly reduced survival, compared with hCD39AA mice. hCD39AG/GG mice showed significantly higher hCD4+ :hCD8+ T-cell ratios than hCD39AA mice, but displayed similar proportions of CD3+ hCD4+ hCD25+ hCD127lo Tregs and hCD39+ Tregs. However, the proportion of human Tregs corresponded to survival in hCD39AA mice, but not in hCD39AG/GG mice. This study demonstrates that donors encoding the G allele show higher percentages of CD39+ Tregs, but cause worsened GVHD in humanized mice compared with donors homozygous for the A allele.
Assuntos
Apirase/genética , Doença Enxerto-Hospedeiro , Linfócitos T Reguladores/imunologia , Animais , Austrália , Humanos , Leucócitos Mononucleares , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: Allogeneic haematopoietic stem cell transplantation (HSCT) is a curative therapy for blood cancers; but results in the development of graft-versus-host disease (GVHD) in up to 70% of recipients. During GVHD, tissue damage results in ATP release into the extracellular compartment activating P2X7 on antigen-presenting cells, leading to the release of pro-inflammatory cytokines and subsequent activation of donor T cells. Therefore, the aim of the present study was to examine murine (m) P2rx7 and human (h) P2RX7 gene expression in GVHD target organs of humanised mice, and further characterise disease impact in these organs. METHODS: NOD-scid IL2Rγnull (NSG) mice were injected with human peripheral blood mononuclear cells (hu-PBMC-NSG mice) or phosphate-buffered saline (PBS, control). Leucocytes were assessed by flow cytometry; gene expression was measured by quantitative polymerase chain reaction (qPCR), and tissue sections examined by histology. RESULTS: Compared with control mice, hu-PBMC-NSG mice had increased mP2rx7 and mP2rx4 expression in the duodenum, ileum and skin. hP2RX7 was expressed in all tissues examined. hu-PBMC-NSG mice also displayed increased mReg3g expression in the duodenum and ileum, despite limited histological gut GVHD. hu-PBMC-NSG mice showed histological evidence of GVHD in the skin, liver and lung. Compared with control mice, hu-PBMC-NSG mice displayed increased ear swelling. CONCLUSION: Combined data revealed that P2rx7 is up-regulated in gut and skin GVHD and that P2RX7 is present in target tissues of GVHD, corresponding to human leucocyte infiltration. Data also reveal increased mReg3g expression and ear swelling in hu-PBMC-NSG mice, offering new measurements of early-stage gut GVHD and skin GVHD, respectively.
Assuntos
Trato Gastrointestinal/metabolismo , Doença Enxerto-Hospedeiro/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Pele/metabolismo , Adulto , Animais , Antígenos CD/metabolismo , Modelos Animais de Doenças , Orelha/patologia , Feminino , Doença Enxerto-Hospedeiro/sangue , Humanos , Interferon gama/sangue , Leucócitos Mononucleares/metabolismo , Fígado/patologia , Pulmão/patologia , Masculino , Camundongos , Proteínas Associadas a Pancreatite/metabolismo , Baço/imunologia , Linfócitos T/imunologia , Regulação para Cima/genética , Adulto JovemRESUMO
CD39 and CD73 are ecto-nucleotidases present on human peripheral blood mononuclear cells (PBMCs) and are emerging biomarkers on these cells in various disorders including cancer. Many factors influence PBMC quality, so it is essential to validate sample processing methods prior to incorporation in clinical studies. This study examined the impact of both PBMC cryopreservation and PBMC isolation using SepMate density gradient centrifugation on CD39 and CD73 expressing subsets. First, PBMCs were isolated from the peripheral blood of 11 healthy donors by routine Ficoll-Paque density gradient centrifugation, cryopreserved and compared with freshly isolated PBMCs by flow cytometry. The proportions of T and B cells expressing combinations of CD39 and CD73 were relatively stable over 6-month cryopreservation, although some T cell combinations revealed small but significant changes. Second, peripheral blood was collected from six healthy donors to compare PBMCs isolated by SepMate or Ficoll-Paque density gradient centrifugation. Compared with Ficoll-Paque, the more rapid SepMate method yielded 9.1% less PBMCs but did not alter cell viability or proportions of T and B cells expressing combinations of CD39 and CD73. The present study reveals that cryopreservation is suitable for studying T and B cells expressing combinations of CD39 and CD73. However, caution should be exercised when observing small differences in these cryopreserved subsets between different cohorts. Further, SepMate and Ficoll-Paque methods of PBMC isolation show similar results for T and B cell subset analysis; however, SepMate is a faster and easier approach.
Assuntos
5'-Nucleotidase/metabolismo , Antígenos CD/metabolismo , Apirase/metabolismo , Separação Celular/métodos , Leucócitos Mononucleares/metabolismo , Linfócitos/metabolismo , Criopreservação , Citometria de Fluxo , HumanosRESUMO
The ATP-gated P2X7 ion channel has emerging roles in amyotrophic lateral sclerosis (ALS) progression. Pharmacological blockade of P2X7 with Brilliant Blue G can ameliorate disease in SOD1G93A mice, but recent data suggests that this antagonist displays poor penetration of the central nervous system (CNS). Therefore, the current study aimed to determine whether the CNS-penetrant P2X7 antagonist, JNJ-47965567, could ameliorate ALS progression in SOD1G93A mice. A flow cytometric assay revealed that JNJ-47965567 impaired ATP-induced cation dye uptake in a concentration-dependent manner in murine J774 macrophages. Female and male SOD1G93A mice were injected intraperitoneally with JNJ-47965567 (30 mg/kg) or 2-(hydroxypropyl)-beta-cyclodextrin (vehicle control) three times a week from disease onset until end stage, when tissues were collected and studied. JNJ-47965567 did not impact weight loss, clinical score, motor (rotarod) coordination or survival compared to control mice. NanoString analysis revealed altered spinal cord gene expression in JNJ-47965567 mice compared to control mice, but such differences were not confirmed by quantitative PCR. Flow cytometric analyses revealed no differences between treatments in the frequencies or activation status of T cell or dendritic cell subsets in lymphoid tissues or in the concentrations of serum cytokines. Notably, serum IL-27, IFNß and IL-10 were present in relatively high concentrations compared to other cytokines in both groups. In conclusion, JNJ-47965567 administered thrice weekly from disease onset did not alter disease progression or molecular and cellular parameters in SOD1G93A mice.
Assuntos
Esclerose Lateral Amiotrófica/patologia , Niacinamida/análogos & derivados , Piperazinas/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Animais , Progressão da Doença , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Niacinamida/farmacologia , Superóxido Dismutase-1/genéticaRESUMO
Purinergic receptors of the P2 subclass are commonly found in human and rodent macrophages where they can be activated by adenosine 5'-triphosphate (ATP) or uridine 5'-triphosphate (UTP) to mediate Ca2+ mobilization, resulting in downstream signalling to promote inflammation and pain. However, little is understood regarding these receptors in canine macrophages. To establish a macrophage model of canine P2 receptor signalling, the expression of these receptors in the DH82 canine macrophage cell line was determined by reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemistry. P2 receptor function in DH82 cells was pharmacologically characterised using nucleotide-induced measurements of Fura-2 AM-bound intracellular Ca2+. RT-PCR revealed predominant expression of P2X4 receptors, while immunocytochemistry confirmed predominant expression of P2Y2 receptors, with low levels of P2X4 receptor expression. ATP and UTP induced robust Ca2+ responses in the absence or presence of extracellular Ca2+. ATP-induced responses were only partially inhibited by the P2X4 receptor antagonists, 2',3'-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP), paroxetine and 5-BDBD, but were strongly potentiated by ivermectin. UTP-induced responses were near completely inhibited by the P2Y2 receptor antagonists, suramin and AR-C118925. P2Y2 receptor-mediated Ca2+ mobilization was inhibited by U-73122 and 2-aminoethoxydiphenyl borate (2-APB), indicating P2Y2 receptor coupling to the phospholipase C and inositol triphosphate signal transduction pathway. Together this data demonstrates, for the first time, the expression of functional P2 receptors in DH82 canine macrophage cells and identifies a potential cell model for studying macrophage-mediated purinergic signalling in inflammation and pain in dogs.
Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Macrófagos/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Animais , Linhagem Celular , Cães , Macrófagos/citologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologiaRESUMO
Allogeneic hematopoietic stem cell transplantation is a curative therapy for a number of hematological malignancies, but is limited by the development of graft-versus-host disease (GVHD). CD39 and CD73 form an ectoenzymatic pathway that hydrolyzes extracellular adenosine 5'-triphosphate (ATP) to adenosine, which respectively exacerbate or alleviate disease in allogeneic mouse models of GVHD. The current study aimed to explore the role of the CD39/CD73 pathway and adenosine receptor (AR) blockade in a humanized mouse model of GVHD. Immunodeficient nonobese diabetic-severe combined immunodeficiency-IL-2 receptor γnull mice were injected with human peripheral blood mononuclear cells, and subsequently injected with the CD39/CD73 antagonist αß-methylene-ADP (APCP) (50 mg kg-1 ) or saline for 7 days, or the AR antagonist caffeine (10 mg kg-1 ) or saline for 14 days. Mice predominantly engrafted human CD4+ and CD8+ T cells, with smaller proportions of human regulatory T cells, invariant natural killer T cells, monocytes and dendritic cells. Neither APCP nor caffeine altered engraftment of these human leukocyte subsets. APCP (CD39/CD73 blockade) augmented GVHD as shown through increased weight loss and worsened liver histology, including increased leukocyte and human T-cell infiltration, and increased apoptosis. This treatment also increased serum human IL-2 concentrations and decreased the frequency of human CD39- CD73- CD4+ T cells. In contrast, caffeine (AR blockade) did not alter GVHD severity or human serum cytokine concentrations (IL-2, IL-6, IL-10 or tumor necrosis factor-α). In conclusion, blockade of CD39/CD73 but not ARs augments disease in a humanized mouse model of GVHD. These results indicate that CD39/CD73 blockade maintains sufficient extracellular ATP concentrations to promote GVHD in this model.
Assuntos
5'-Nucleotidase/metabolismo , Apirase/antagonistas & inibidores , Fosfatos de Dinucleosídeos/administração & dosagem , Doença Enxerto-Hospedeiro/metabolismo , Transplante de Células-Tronco Hematopoéticas , Trifosfato de Adenosina/metabolismo , Animais , Antígenos CD , Células Cultivadas , Quimerismo/efeitos dos fármacos , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/prevenção & controle , Humanos , Leucócitos Mononucleares/transplante , Camundongos , Camundongos SCID , Antagonistas de Receptores Purinérgicos P1/administração & dosagem , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais , Transplante HomólogoRESUMO
Nanotechnology has the potential to bring about revolutionary changes in manufacturing products, including sunscreens. However, a knowledge gap between benefits and detriments of engineered nano-materials used in sunscreens exists, which gives rise to safety concerns. This article is concerned with the protection of consumers without impairing the embellishment of this promising technology. It is widely argued that the harm associated with nano-sunscreens may only occur under certain conditions related mainly to users skin vulnerability, which can be avoided by informed and careful use of such a product. We thus recognize the need for fostering the growth of nanotech simultaneously with preventing potential harm. We revisit the Australian sunscreens regulatory policies, which embrace a "wait and see" approach, through the lens of regulatory policies in the European Union (EU) that are influenced by a "precautionary principle." We highlight the importance of informing consumers about the sunscreen they are using and recommend that product labels should disclose the presence of nano-ingredients in line with the EU disclosure requirements. This will allow users to carefully apply the product in order to avoid any potential harm and to protect manufacturers from possible costly litigation in future. This can be achieved through a combined collaborative effort of regulators, supply chain entities, and end users.