Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 25(1): 2338786, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680949

RESUMO

Electrochemical grafting of organic molecules to metal surfaces has been well-known as an efficient tool enabling tailored modification of surface at the nanoscale. Among many compounds with the ability to undergo the process of electrografting, iodonium salts belong to less frequently used, especially when compared with the most popular diazonium salts. Meanwhile, due to their increased stability, iodonium salts may be used in situations where the use of diazonium salts is constrained. The aim of this study was to examine the effect of the electrochemical reduction of iodonium salts on the physicochemical properties of Pt electrodes, and the possibility to form pro-adhesive layers facilitating further functionalization purposes. Consequently, we have selected four commercially available iodonium salts (diphenyliodonium chloride, bis(4-tertbutylphenyl)iodonium hexafluorophosphate, (4-nitrophenyl)(2,4,6-trimethylphenyl)iodonium triflate, bis(4-methylphenyl)iodonium hexafluorophosphate), and attached them to the surface of Pt electrodes by means of an electrochemical reduction process. As-formed layers were then extensively characterized in terms of wettability, roughness and charge transfer properties, and used as pro-adhesive coatings prior to the deposition of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), PEDOT:PSS. Due to the increase in hydrophilicity and roughness, modified electrodes increased the stability of PEDOT:PSS coating while maintaining its high capacitance.


Adhesion and charge transfer between PEDOT:PSS and the surface of the electrode are significantly improved by a simple electrode modification strategy using the electrochemical grafting of commercially available iodonium salts.

2.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628758

RESUMO

In the pursuit of designing a reusable catalyst with enhanced catalytic activity, recent studies indicate that electrochemical grafting of diazonium salts is an efficient method of forming heterogeneous catalysts. The aim of this review is to assess the industrial applicability of diazonium-based catalysts with particular emphasis on their mechanical, chemical, and thermal stability. To this end, different approaches to catalyst production via diazonium salt chemistry have been compared, including the immobilization of catalysts by a chemical reaction with a diazonium moiety, the direct use of diazonium salts and nanoparticles as catalysts, the use of diazonium layers to modulate wettability of a carrier, as well as the possibility of transforming the catalyst into the corresponding diazonium salt. After providing descriptions of the most suitable carriers, the most common deactivation routes of catalysts have been discussed. Although diazonium-based catalysts are expected to exhibit good stability owing to the covalent bond created between a catalyst and a post-diazonium layer, this review indicates the paucity of studies that experimentally verify this hypothesis. Therefore, use of diazonium salts appears a promising approach in catalysts formation if more research efforts can focus on assessing their stability and long-term catalytic performance.

3.
Molecules ; 28(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37630242

RESUMO

Membranes produced by crosslinking chitosan with magnesium phytate were prepared using highly deacetylated chitosan and its N-carboxymethyl, O-carboxymethyl and N,O-carboxymethyl derivatives. The conditions of the membrane production were described. IR, Raman, electron absorption and emission spectra were measured and analyzed for all the substrates. It was found that O-carboxymethyl chitosan derivative is the most effectively crosslinked by magnesium phytate, and the films formed on this substrate exhibit good mechanical parameters of strength, resistance and stability. Strong O-H···O hydrogen bonds proved to be responsible for an effective crosslinking process. Newly discovered membrane types produced from chitosan and magnesium phytate were characterized as morphologically homogenous and uniform by scanning electron microscopy (SEM) and IR measurements. Due to their good covering properties, they do not have pores or channels and are proposed as packaging materials.

4.
Inorg Chem ; 61(38): 15225-15238, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36102245

RESUMO

Hybrid organic-inorganic lead halide perovskites have emerged as promising materials for various applications, including solar cells, light-emitting devices, dielectrics, and optical switches. In this work, we report the synthesis, crystal structures, and linear and nonlinear optical as well as dielectric properties of three imidazolium lead bromides, IMPbBr3, IM2PbBr4, and IM3PbBr5 (IM+ = imidazolium). We show that these compounds exhibit three distinct structure types. IMPbBr3 crystallizes in the 4H-hexagonal perovskite structure with face- and corner-shared PbBr6 octahedra (space group P63/mmc at 295 K), IM2PbBr4 adopts a one-dimensional (1D) double-chain structure with edge-shared octahedra (space group P1̅ at 295 K), while IM3PbBr5 crystallizes in the 1D single-chain structure with corner-shared PbBr6 octahedra (space group P1̅ at 295 K). All compounds exhibit two structural phase transitions, and the lowest temperature phases of IMPbBr3 and IM3PbBr5 are noncentrosymmetric (space groups Pna21 at 190 K and P1 at 100 K, respectively), as confirmed by measurements of second-harmonic generation (SHG) activity. X-ray diffraction and thermal and Raman studies demonstrate that the phase transitions feature an order-disorder mechanism. The only exception is the isostructural P1̅ to P1̅ phase transition at 141 K in IM2PbBr4, which is of a displacive type. Dielectric studies reveal that IMPbBr3 is a switchable dielectric material, whereas IM3PbBr5 is an improper ferroelectric. All compounds exhibit broadband, highly shifted Stokes emissions. Features of these emissions, i.e., band gap and excitonic absorption, are discussed in relation to the different structures of each composition.

5.
Materials (Basel) ; 17(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38893767

RESUMO

Hybrid lead iodide perovskites are promising photovoltaic and light-emitting materials. Extant literature data on the key optoelectronic and luminescent properties of hybrid perovskites indicate that these properties are affected by electron-phonon coupling, the dynamics of the organic cations, and the degree of lattice distortion. We report temperature-dependent Raman studies of BA2MAPb2I7 and BA2MA2Pb3I10 (BA = butylammonium; MA = methylammonium), which undergo two structural phase transitions. Raman data obtained in broad temperature (360-80 K) and wavenumber (1800-10 cm-1) ranges show that ordering of BA+ cations triggers the higher temperature phase transition, whereas freezing of MA+ dynamics occurs below 200 K, leading to the onset of the low-temperature phase transition. This ordering is associated with significant deformation of the inorganic sublattice, as evidenced by changes observed in the lattice mode region. Our results show, therefore, that Raman spectroscopy is a very valuable tool for monitoring the separate dynamics of different organic cations in perovskites, comprising "perovskitizer" and interlayer cations.

6.
Dalton Trans ; 53(16): 6906-6919, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38563080

RESUMO

This study revisits a (001)-oriented layered lead chloride templated by 1,2,4-triazolium, Tz2PbCl4, which recently has been an object of intense research but still suffers from gaps in characterization. Indeed, the divergent reports on the crystal structures of Tz2PbCl4 at various temperatures, devoid of independent verification of chiral phases through second harmonic generation (SHG), have led to an unresolved debate regarding the existence of a low-temperature phase transition (PT) and the noncentrosymmetric nature of the low-temperature phase. Now, by combining differential scanning calorimetry, single-crystal X-ray diffraction, dielectric, as well as linear and nonlinear optical spectroscopies on Tz2PbCl4, we reveal a sequence of reversible PTs at T1 = 361 K (phase I-II), T2 = 339 K (phase II-III), and T3 = 280 K (phase III-IV). No SHG activity could be registered for any of the four crystal phases, as checked by wide-temperature range SHG screening, supporting their centrosymmetry. The dipole relaxation processes indicate a decrease in activation energy with increasing temperature, from 0.60, 0.38, to 0.24 eV observed for phase IV (space group P21/c), phase III (Pnma), and phase II (Cmcm), respectively. This change is interpreted as a result of the diminishing strength of H-bonds as the system transforms from phase IV to III and subsequently to II. The weaker H-bonds facilitate the reorientation of Tz+ cations in the presence of an external electric field. The photoluminescence spectra of Tz2PbCl4 reveal an intriguing interplay of narrow and broadband emission, linked respectively to free excitons and excitons trapped on defects. Notably, as the temperature decreases from 300 K to 16 K, both the emission bands exhibit distinctive blue and red shifts, indicative of increased in-plane octahedral distortion. This dynamic behaviour transforms the photoluminescence of Tz2PbCl4 from greenish-blue at 300 K to yellowish-green at 13 K, enriching our understanding of 2D lead halide perovskites and highlighting the optoelectronic potential of Tz2PbCl4.

7.
Bioelectrochemistry ; 153: 108484, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37302335

RESUMO

The continuous progression in the field of electrotherapies implies the development of multifunctional materials exhibiting excellent electrochemical performance and biocompatibility, promoting cell adhesion, and possessing antibacterial properties. Since the conditions favouring the adhesion of mammalian cells are similar to conditions favouring the adhesion of bacterial cells, it is necessary to engineer the surface to exhibit selective toxicity, i.e., to kill or inhibit the growth of bacteria without damaging mammalian tissues. The aim of this paper is to introduce a surface modification approach based on a subsequent deposition of silver and gold particles on the surface of a conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT). The resulting PEDOT-Au/Ag surface is found to possess optimal wettability, roughness, and surface features making it an excellent platform for cell adhesion. By depositing Ag particles on PEDOT surface decorated with Au particles, it is possible to reduce toxic effects of Ag particles, while maintaining their antibacterial activity. Besides, electroactive and capacitive properties of PEDOT-Au/Ag account for its applicability in various electroceutical therapies.


Assuntos
Ouro , Prata , Animais , Prata/farmacologia , Prata/química , Ouro/química , Polímeros/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Antibacterianos/farmacologia , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA