RESUMO
BACKGROUND: Infants born extremely premature are at increased risk for health complications later in life for which neonatal inflammation may be a contributing biological driver. Placental CpG methylation provides mechanistic information regarding the relationship between prenatal epigenetic programming, prematurity, neonatal inflammation, and later-in-life health. METHODS: We contrasted CpG methylation in the placenta and neonatal blood spots in relation to neonatal inflammation in the Extremely Low Gestational Age Newborn (ELGAN) cohort. Neonatal inflammation status was based on the expression of six inflammation-related proteins, assessed as (1) day-one inflammation (DOI) or (2) intermittent or sustained systemic inflammation (ISSI, inflammation on ≥2 days in the first 2 postnatal weeks). Epigenome-wide CpG methylation was assessed in 354 placental samples and 318 neonatal blood samples. RESULTS: Placental CpG methylation displayed the strongest association with ISSI (48 CpG sites) but was not associated with DOI. This was in contrast to CpG methylation in blood spots, which was associated with DOI (111 CpG sites) and not with ISSI (one CpG site). CONCLUSIONS: Placental CpG methylation was strongly associated with ISSI, a measure of inflammation previously linked to later-in-life cognitive impairment, while day-one neonatal blood methylation was associated with DOI. IMPACT: Neonatal inflammation increases the risk of adverse later-life outcomes, especially in infants born extremely preterm. CpG methylation in the placenta and neonatal blood spots were evaluated in relation to neonatal inflammation assessed via circulating proteins as either (i) day-one inflammation (DOI) or (ii) intermittent or sustained systemic inflammation (ISSI, inflammation on ≥2 days in the first 2 weeks). Tissue specificity was observed in epigenetic-inflammatory relationships: placental CpG methylation was associated with ISSI, neonatal blood CpG methylation was associated with DOI. Supporting the placental origins of disease framework, placental epigenetic patterns are associated with a propensity for ISSI in neonates.
Assuntos
Metilação de DNA , Placenta , Recém-Nascido , Humanos , Gravidez , Feminino , Placenta/metabolismo , Inflamação/metabolismo , Recém-Nascido Prematuro , Idade Gestacional , Ilhas de CpG , Epigênese GenéticaRESUMO
OBJECTIVE: In utero fetal exposures may have sex-specific placental gene responses. Our objective was to measure sex-based differences in placental gene expression from dams fed high-fat diet (HFD) versus control diet (CD). STUDY DESIGN: We fed timed pregnant Friend virus B-strain dams either a CD (n = 5) or an HFD (n = 5). We euthanized dams on embryonic day 17.5 to collect placentas. We extracted placental RNA and hybridized it to a customized 96-gene Nanostring panel focusing on angiogenic, inflammatory, and growth genes. We compared normalized gene expression between CD and HFD, stratified by fetal sex, using analysis of variance. Pathway analysis was used to further interpret the genomic data. RESULTS: Pups from HFD-fed dams were heavier than those from CD-fed dams (0.97 ± 0.06 vs 0.84 ± 0.08 g, p < 0.001). Male pups were heavier than females in the HFD (0.99 ± 0.05 vs 0.94 ± 0.06 g, p = 0.004) but not CD (0.87 ± 0.08 vs 0.83 ± 0.07 g, p = 0.10) group. No sex-based differences in placental gene expression in CD-fed dams were observed. Among HFD-fed dams, placentas from female pups exhibited upregulation of 15 genes (q = 0.01). Network analyses identified a cluster of genes involved in carbohydrate metabolism, cellular function and maintenance, and endocrine system development and function (p = 1 × 10-23). The observed female-specific increased gene expression following in utero HFD exposure was predicted to be regulated by insulin (p = 5.79 × 10-13). CONCLUSION: In female compared with male pups, in utero exposure to HFD upregulated placental gene expression in 15 genes predicted to be regulated by insulin. Sex-specific differences in placental expression of these genes should be further investigated. KEY POINTS: · Male pups were heavier than female pups at the time of sacrifice when dams were fed an HFD.. · HFD was associated with upregulated gene expression in female placentas.. · Female-specific increased gene was predicted to be regulated by insulin..
RESUMO
BACKGROUND: Chronic lung disease (CLD) is the most common pulmonary morbidity in extremely preterm infants. It is unclear to what extent prenatal exposures influence the risk of CLD. Epigenetic variation in placenta DNA methylation may be associated with differential risk of CLD, and these associations may be dependent upon sex. METHODS: Data were obtained from a multi-center cohort of infants born extremely preterm (<28 weeks' gestation) and an epigenome-wide approach was used to identify associations between placental DNA methylation and CLD (n = 423). Associations were evaluated using robust linear regression adjusting for covariates, with a false discovery rate of 0.05. Analyses stratified by sex were used to assess differences in methylation-CLD associations. RESULTS: CLD was associated with differential methylation at 49 CpG sites representing 46 genes in the placenta. CLD was associated with differential methylation of probes within genes related to pathways involved in fetal lung development, such as p53 signaling and myo-inositol biosynthesis. Associations between CpG methylation and CLD differed by sex. CONCLUSIONS: Differential placental methylation within genes with key roles in fetal lung development may reflect complex cell signaling between the placenta and fetus which mediate CLD risk. These pathways appear to be distinct based on fetal sex. IMPACT: In extremely preterm infants, differential methylation of CpG sites within placental genes involved in pathways related to cell signaling, oxidative stress, and trophoblast invasion is associated with chronic lung disease of prematurity. DNA methylation patterns associated with chronic lung disease were distinctly based on fetal sex, suggesting a potential mechanism underlying dimorphic phenotypes. Mechanisms related to fetal hypoxia and placental myo-inositol signaling may play a role in fetal lung programming and the developmental origins of chronic lung disease. Continued research of the relationship between the placental epigenome and chronic lung disease could inform efforts to ameliorate or prevent this condition.
Assuntos
Doenças do Prematuro , Pneumopatias , Ilhas de CpG , Metilação de DNA , Feminino , Humanos , Lactente Extremamente Prematuro , Recém-Nascido , Inositol , Pneumopatias/genética , Placenta/metabolismo , GravidezRESUMO
Exposure to fine particulate matter (PM2.5), of which secondary organic aerosol (SOA) is a major constituent, is linked to adverse health outcomes, including cardiovascular disease, lung cancer, and preterm birth. Atmospheric oxidation of isoprene, the most abundant nonmethane hydrocarbon emitted into Earth's atmosphere primarily from vegetation, contributes to SOA formation. Isoprene-derived SOA has previously been found to alter inflammatory/oxidative stress genes. MicroRNAs (miRNAs) are epigenetic regulators that serve as post-transcriptional modifiers and key mediators of gene expression. To assess whether isoprene-derived SOA alters miRNA expression, BEAS-2B lung cells were exposed to laboratory-generated isoprene-derived SOA constituents derived from the acid-driven multiphase chemistry of authentic methacrylic acid epoxide (MAE) or isomeric isoprene epoxydiols (IEPOX) with acidic sulfate aerosol particles. These IEPOX- and MAE-derived SOA constituents have been shown to be measured in large quantities within PM2.5 collected from isoprene-rich areas affected by acidic sulfate aerosol particles derived from human activities. A total of 29 miRNAs were identified as differentially expressed when exposed to IEPOX-derived SOA and 2 when exposed to MAE-derived SOA, a number of which are inflammatory/oxidative stress associated. These results suggest that miRNAs may modulate the inflammatory/oxidative stress response to SOA exposure, thereby advancing the understanding of airway cell epigenetic response to SOA.
Assuntos
Butadienos/farmacologia , Hemiterpenos/farmacologia , Inflamação/induzido quimicamente , Pulmão/efeitos dos fármacos , MicroRNAs/genética , Estresse Oxidativo/efeitos dos fármacos , Aerossóis/química , Aerossóis/farmacologia , Butadienos/química , Células Cultivadas , Hemiterpenos/química , Humanos , Inflamação/metabolismo , Inflamação/patologia , Pulmão/metabolismo , Pulmão/patologia , MicroRNAs/metabolismo , Estrutura MolecularRESUMO
Atmospheric pollution represents a complex mixture of air chemicals that continually interact and transform, making it difficult to accurately evaluate associated toxicity responses representative of real-world exposure. This study leveraged data from a previously published article and reevaluated lung cell transcriptional response induced by outdoor atmospheric pollution mixtures using field-based exposure conditions in the industrialized Houston Ship Channel. The tested hypothesis was that individual and co-occurring chemicals in the atmosphere relate to altered expression of critical genes involved in inflammation and cancer-related processes in lung cells. Human lung cells were exposed at an air-liquid interface to ambient air mixtures for 4 h, with experiments replicated across 5 days. Real-time monitoring of primary and secondary gas-phase pollutants, as well as other atmospheric conditions, was simultaneously conducted. Transcriptional analysis of exposed cells identified critical genes showing differential expression associated with both individual and chemical mixtures. The individual pollutant identified with the largest amount of associated transcriptional response was benzene. Tumor necrosis factor (TNF) and interferon regulatory factor 1 (IRFN1) were identified as key upstream transcription factor regulators of the cellular response to benzene. This study is among the first to measure lung cell transcriptional responses in relation to real-world, gas-phase air mixtures.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Pulmão , TexasRESUMO
OBJECTIVE: We sought to evaluate nitric oxide pathway placental gene expression and the epigenome (CpG methylation) among women receiving 17-α hydroxyprogesterone caproate (17-OHPC) with and without recurrent preterm birth (PTB). STUDY DESIGN: This was a case-control study. We prospectively recruited women with ≥ 1 prior singleton spontaneous PTB <34 weeks receiving 17-OHPC. DNA and RNA were isolated from placentas. RNA abundance (gene expression) and the methylome were analyzed for 84 genes in nitric oxide pathways. Women with recurrent PTB <34 weeks (cases) were compared with those delivering at term (controls). Statistical analysis included multivariable models with Bonferroni's corrected p-values. RESULTS: In this study, 17 women met inclusion criteria; 7 preterm cases (delivered at 22.6 ± 2.9 weeks) and 10 term controls (delivered at 38.5 ± 0.8 weeks). Groups had similar PTB history, race/ethnicity, and socioeconomic risk factors for PTB. Twenty-seven nitric oxide genes displayed differential expression (p < 0.05 and q < 0.10) when comparing placentas from preterm cases and term controls; all were downregulated in preterm cases. Eight hundred sixty corresponding CpG sites were differentially methylated between the preterm cases and term controls (Bonferroni's p-value <0.05). CONCLUSION: CpG methylation and gene expression patterns in nitric oxide pathway genes differ among placentas from recurrent PTB compared with term birth following 17-OHPC exposure.
Assuntos
Caproato de 17 alfa-Hidroxiprogesterona/uso terapêutico , Antagonistas de Estrogênios/uso terapêutico , Óxido Nítrico/metabolismo , Nascimento Prematuro/genética , Nascimento Prematuro/prevenção & controle , Transdução de Sinais , Adulto , Estudos de Casos e Controles , Ilhas de CpG , Epigênese Genética , Feminino , Expressão Gênica , Idade Gestacional , Humanos , Recém-Nascido , Metilação , Gravidez , Estudos Prospectivos , Recidiva , Fatores de RiscoRESUMO
Prenatal inorganic arsenic (iAs) exposure is associated with health effects evident at birth and later in life. An understanding of the relationship between prenatal iAs exposure and alterations in the neonatal metabolome could reveal critical molecular modifications, potentially underpinning disease etiologies. In this study, nuclear magnetic resonance (NMR) spectroscopy-based metabolomic analysis was used to identify metabolites in neonate cord serum associated with prenatal iAs exposure in participants from the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort, in Gómez Palacio, Mexico. Through multivariable linear regression, ten cord serum metabolites were identified as significantly associated with total urinary iAs and/or iAs metabolites, measured as %iAs, %monomethylated arsenicals (MMAs), and %dimethylated arsenicals (DMAs). A total of 17 metabolites were identified as significantly associated with total iAs and/or iAs metabolites in cord serum. These metabolites are indicative of changes in important biochemical pathways such as vitamin metabolism, the citric acid (TCA) cycle, and amino acid metabolism. These data highlight that maternal biotransformation of iAs and neonatal levels of iAs and its metabolites are associated with differences in neonate cord metabolomic profiles. The results demonstrate the potential utility of metabolites as biomarkers/indicators of in utero environmental exposure.
Assuntos
Arsênio , Metabolômica , Arsenicais , Exposição Ambiental , Feminino , Humanos , Recém-Nascido , México , GravidezRESUMO
Both exposures to toxic metals, as well as deficiencies in essential metals, during pregnancy has been linked to a variety of negative reproductive outcomes. The exact etiologies of such outcomes and the effects of fetal exposure to these metals are largely unknown. Therefore, the ability to assess levels of these elements is critical to determining the underlying causes of such conditions and the effects that both essential and nonessential metals have on fetal development. Thus, using cell-free fetal RNA from amniotic fluid, we set out to measure the association between amniotic fluid levels of toxic and essential metals and fetal gene expression. We find that arsenic was associated with increased expression of 3 genes known to play roles in both birth-related and reproductive effects. The results highlight the potential for detrimental health effects of prenatal metals exposure and the potential to identify biomarkers of environmental exposure during this critical developmental period.
Assuntos
Líquido Amniótico/química , Feto/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Exposição Materna , Metais Pesados/toxicidade , Adolescente , Adulto , Feminino , Feto/metabolismo , Humanos , Masculino , Projetos Piloto , Gravidez , Adulto JovemRESUMO
BACKGROUND: Peripheral epigenetic marks hold promise for understanding psychiatric illness and may represent fingerprints of gene-environment interactions. We conducted an initial examination of CpG methylation variation in children with or without attention-deficit/hyperactivity disorder (ADHD). METHODS: Children age 7-12 were recruited, screened, evaluated and assigned to ADHD or non-ADHD groups by defined research criteria. Two independent age-matched samples were examined, a discovery set (n = 92, all boys, half control, half ADHD) and a confirmation set (n = 20, half ADHD, all boys). 5-methylcytosine levels were quantified in salivary DNA using the Illumina 450 K HumanMethylation array. Genes for which multiple probes were nominally significant and had a beta difference of at least 2% were evaluated for biological relevance and prioritized for confirmation and sequence validation. Gene pathways were explored and described. RESULTS: Two genes met the criteria for confirmation testing, VIPR2 and MYT1L; both had multiple probes meeting cutoffs and strong biological relevance. Probes on VIPR2 passed FDR correction in the confirmation set and were confirmed through bisulfite sequencing. Enrichment analysis suggested involvement of gene sets or pathways related to inflammatory processes and modulation of monoamine and cholinergic neurotransmission. CONCLUSIONS: Although it is unknown to what extent CpG methylation seen in peripheral tissue reflect transcriptomic changes in the brain, these initial results indicate that peripheral DNA methylation markers in ADHD may be promising and suggest targeted hypotheses for future study in larger samples.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Metilação de DNA/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Transtorno do Deficit de Atenção com Hiperatividade/genética , Biomarcadores/metabolismo , Criança , Ilhas de CpG/genética , Humanos , Masculino , Proteínas do Tecido Nervoso , Projetos Piloto , Saliva/metabolismo , Fatores de TranscriçãoRESUMO
There is strong epidemiologic evidence linking chronic exposure to inorganic arsenic (iAs) to myriad adverse health effects, including cancer of the bladder. We set out to identify DNA methylation patterns associated with arsenic and its metabolites in exfoliated urothelial cells (EUCs) that originate primarily from the urinary bladder, one of the targets of arsenic-induced carcinogenesis. Genome-wide, gene-specific promoter DNA methylation levels were assessed in EUCs from 46 residents of Chihuahua, Mexico, and the relationship was examined between promoter methylation profiles and the intracellular concentrations of total arsenic and arsenic species. A set of 49 differentially methylated genes was identified with increased promoter methylation associated with EUC tAs, iAs, and/or monomethylated As (MMAs) enriched for their roles in metabolic disease and cancer. Notably, no genes had differential methylation associated with EUC dimethylated As (DMAs), suggesting that DMAs may influence DNA methylation-mediated urothelial cell responses to a lesser extent than iAs or MMAs. Further analysis showed that 22 of the 49 arsenic-associated genes (45%) are also differentially methylated in bladder cancer tissue identified using The Cancer Genome Atlas repository. Both the arsenic- and cancer-associated genes are enriched for the binding sites of common transcription factors known to play roles in carcinogenesis, demonstrating a novel potential mechanistic link between iAs exposure and bladder cancer.
Assuntos
Arsênio/toxicidade , Metilação de DNA/efeitos dos fármacos , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/genética , Urotélio/citologia , Urotélio/efeitos dos fármacos , Adulto , Idoso , Arsênio/metabolismo , Transformação Celular Neoplásica/induzido quimicamente , Metilação de DNA/genética , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias da Bexiga Urinária/patologia , Adulto JovemRESUMO
We previously demonstrated that, in nasal epithelial cells (NECs) from smokers, methylation of an antiviral gene was associated with impaired antiviral defense responses. To expand these findings and better understand biological mechanisms underlying cigarette smoke (CS)-induced modifications of host defense responses, we aimed to compare DNA methylation of genes that may play a role in antiviral response. We used a two-tiered analytical approach, where we first implemented a genome-wide strategy. NECs from smokers differed in the methylation levels of 390 genes, the majority (84%) of which showed decreased methylation in smokers. Secondly, we generated an a priori set of 161 antiviral response-related genes, of which five were differentially methylated in NEC from smokers (CCL2, FDPS, GSK3B, SOCS3, and ULBP3). Assessing these genes at the systems biology level revealed a protein interaction network associated with CS-induced epigenetic modifications involving SOCS3 and ULBP3 signaling, among others. Subsequent confirmation studies focused on SOCS3 and ULBP3, which were hypomethylated and hypermethylated, respectively. Expression of SOCS3 was increased, whereas ULBP3 expression was decreased in NECs from smokers. Addition of the demethylating agent 5-Aza-2-deoxycytidine enhanced ULBP3 expression in NECs from smokers. Furthermore, infection of differentiated NECs with influenza virus resulted in significantly lower levels of ULBP3 in cells from smokers. Taken together, our findings show that genomic DNA methylation profiles are altered in NECs from smokers and that these changes are associated with decreased antiviral host defense responses, indicating that epigenenic dysregulation of genes such as SOCS3 and ULBP3 likely impacts immune responses in the epithelium.
Assuntos
Metilação de DNA , Células Epiteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucosa Nasal/metabolismo , Fumar/efeitos adversos , Fumar/fisiopatologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Adulto , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Decitabina , Células Epiteliais/imunologia , Feminino , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/metabolismo , Humanos , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Masculino , Mucosa Nasal/imunologia , Proteína 3 Supressora da Sinalização de Citocinas , TranscriptomaRESUMO
Biotransformation of inorganic arsenic (iAs) is one of the factors that determines the character and magnitude of the diverse detrimental health effects associated with chronic iAs exposure, but it is unknown how iAs biotransformation may impact the epigenome. Here, we integrated analyses of genome-wide, gene-specific promoter DNA methylation levels of peripheral blood leukocytes with urinary arsenical concentrations of subjects from a region of Mexico with high levels of iAs in drinking water. These analyses revealed dramatic differences in DNA methylation profiles associated with concentrations of specific urinary metabolites of arsenic (As). The majority of individuals in this study had positive indicators of As-related disease, namely pre-diabetes mellitus or diabetes mellitus (DM). Methylation patterns of genes with known associations with DM were associated with urinary concentrations of specific iAs metabolites. Future studies will determine whether these DNA methylation profiles provide mechanistic insight into the development of iAs-associated disease, predict disease risk, and/or serve as biomarkers of iAs exposure in humans.
Assuntos
Intoxicação por Arsênico/metabolismo , Arsênio/toxicidade , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Leucócitos/metabolismo , Arsênio/farmacocinética , Intoxicação por Arsênico/genética , Intoxicação por Arsênico/patologia , Biomarcadores/metabolismo , Diabetes Mellitus/induzido quimicamente , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Epigenômica/métodos , Feminino , Estudo de Associação Genômica Ampla , Humanos , Leucócitos/patologia , MasculinoRESUMO
Social determinants of health (SDoH) are defined as the conditions in which people are born, grow, live, work, and age. The distribution of these conditions is influenced by underlying structural factors and may be linked to adverse pregnancy outcomes through epigenetic modifications of gestational tissues. A promising modification is epigenetic gestational age (eGA), which captures 'biological' age at birth. Measuring eGA in placenta, an organ critical for foetal development, may provide information about how SDoH 'get under the skin' during pregnancy to influence birth outcomes and ethnic/racial disparities. We examined relationships of placental eGA with sociodemographic factors, smoking, and two key clinical outcomes: Apgar scores and NICU length of stay. Using the Robust Placental Clock, we estimated eGA for placental samples from the Extremely Low Gestational Age Newborns cohort (N = 408). Regression modelling revealed smoking during pregnancy was associated with placental eGA acceleration (i.e., eGA higher than chronologic gestational age). This association differed by maternal race: among infants born to mothers racialized as Black, we observed greater eGA acceleration (+0.89 week, 95% CI: 0.38, 1.40) as compared to those racialized as white (+0.27 week, 95% CI: -0.06, 0.59). Placental eGA acceleration was also correlated with shorter NICU lengths of stay, but only among infants born to mothers racialized as Black (-0.08 d/week-eGA, 95% CI: -0.12, -0.05). Together, these observed associations suggest that interpretations of epigenetic gestational aging may be tissue-specific.
Assuntos
Lactente Extremamente Prematuro , Placenta , Lactente , Humanos , Recém-Nascido , Gravidez , Feminino , Fatores Sociodemográficos , Metilação de DNA , Idade Gestacional , Resultado da Gravidez , Fumar/genética , Epigênese Genética , EnvelhecimentoRESUMO
Aim: The placenta-brain axis reflects a developmental linkage where disrupted placental function is associated with impaired neurodevelopment later in life. Placental gene expression and the expression of epigenetic modifiers such as miRNAs may be tied to these impairments and are understudied. Materials & methods: The expression levels of mRNAs (n = 37,268) and their targeting miRNAs (n = 2083) were assessed within placentas collected from the ELGAN study cohort (n = 386). The ELGAN adolescents were assessed for neurocognitive function at age 10 and the association with placental mRNA/miRNAs was determined. Results: Placental mRNAs related to inflammatory and apoptotic processes are under miRNA control and associated with cognitive impairment at age 10. Conclusion: Findings highlight key placenta epigenome-brain relationships that support the developmental origins of health and disease hypothesis.
Children born extremely preterm are at increased risk for neurodevelopmental impairments such as cerebral palsy, intellectual disability and autism. The biological processes that lead to these impairments likely begin before birth and involve altered placental function. In this study, the authors analyzed placental genomic and epigenomic data from children who were born extremely preterm in relation to cognitive assessments at 10 years of age. They examined the differences between the expression of placental genes and molecules that influence the expression of placental genes, comparing children who had impaired cognition at 10 years with children who did not. The results demonstrated elevated expression levels of genes involved in inflammatory processes and molecules that control the expression of these genes within the placentas of children who had impaired cognition at age 10.
Assuntos
Disfunção Cognitiva , MicroRNAs , Adolescente , Encéfalo , Criança , Disfunção Cognitiva/genética , Epigenoma , Epigenômica , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Placenta/metabolismo , Gravidez , TranscriptomaRESUMO
Background: Prenatal exposures to metallic and metalloid trace elements have been linked to altered immune function in animal studies, but few epidemiologic studies have investigated immunological effects in humans. We evaluated the risk of bacterial sepsis (an extreme immune response to bacterial infection) in relation to prenatal metal/metalloid exposures, individually and jointly, within a US-based cohort of infants born extremely preterm. Methods: We analyzed data from 269 participants in the US-based ELGAN cohort, which enrolled infants delivered at <28 weeks' gestation (2002-2004). Concentrations of 8 trace elements-including 4 non-essential and 4 essential-were measured using inductively coupled plasma tandem mass spectrometry in umbilical cord tissue, reflecting in utero fetal exposures. The infants were followed from birth to postnatal day 28 with bacterial blood culture results reported weekly to detect sepsis. Discrete-time hazard and quantile g-computation models were fit to estimate associations for individual trace elements and their mixtures with sepsis incidence. Results: Approximately 30% of the extremely preterm infants developed sepsis during the follow-up period (median follow-up: 2 weeks). After adjustment for potential confounders, no trace element was individually associated with sepsis risk. However, there was some evidence of a non-monotonic relationship for cadmium, with hazard ratios (HRs) for the second, third, and fourth (highest) quartiles being 1.13 (95% CI: 0.51-2.54), 1.94 (95% CI: 0.87-4.32), and 1.88 (95% CI: 0.90-3.93), respectively. The HRs for a quartile increase in concentrations of all 8 elements, all 4 non-essential elements, and all 4 essential elements were 0.92 (95% CI: 0.68-1.25), 1.19 (95% CI: 0.92-1.55), and 0.77 (95% CI: 0.57-1.06). Cadmium had the greatest positive contribution whereas arsenic, copper, and selenium had the greatest negative contributions to the mixture associations. Conclusions: We found some evidence that greater prenatal exposure to cadmium was associated with an increased the risk of bacterial sepsis in extremely preterm infants. However, this risk was counteracted by a combination of arsenic, copper, and selenium. Future studies are needed to confirm these findings and to evaluate the potential for nutritional interventions to prevent sepsis in high-risk infants.
RESUMO
As the master regulator in utero, the placenta is core to the Developmental Origins of Health and Disease (DOHaD) hypothesis but is historically understudied. To identify placental gene-trait associations (GTAs) across the life course, we perform distal mediator-enriched transcriptome-wide association studies (TWAS) for 40 traits, integrating placental multi-omics from the Extremely Low Gestational Age Newborn Study. At [Formula: see text], we detect 248 GTAs, mostly for neonatal and metabolic traits, across 176 genes, enriched for cell growth and immunological pathways. In aggregate, genetic effects mediated by placental expression significantly explain 4 early-life traits but no later-in-life traits. 89 GTAs show significant mediation through distal genetic variants, identifying hypotheses for distal regulation of GTAs. Investigation of one hypothesis in human placenta-derived choriocarcinoma cells reveal that knockdown of mediator gene EPS15 upregulates predicted targets SPATA13 and FAM214A, both associated with waist-hip ratio in TWAS, and multiple genes involved in metabolic pathways. These results suggest profound health impacts of placental genomic regulation in developmental programming across the life course.
Assuntos
Doença/genética , Estudos de Associação Genética/métodos , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Herança Multifatorial/genética , Placenta/metabolismo , Transcriptoma/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Feminino , Predisposição Genética para Doença/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Recém-Nascido , Camundongos , Gravidez , Locos de Características Quantitativas/genética , RNA-Seq/métodosRESUMO
BACKGROUND: Exposure to the toxic metals arsenic and cadmium is associated with detrimental health effects including cancers of various organs. While arsenic and cadmium are well known to cause adverse health effects at high doses, the molecular impact resulting from exposure to environmentally relevant doses of these metals remains largely unexplored. RESULTS: In this study, we examined the effects of in vitro exposure to either arsenic or cadmium in human TK6 lymphoblastoid cells using genomics and systems level pathway mapping approaches. A total of 167 genes with differential expression were identified following exposure to either metal with surprisingly no overlap between the two. Real-time PCR was used to confirm target gene expression changes. The gene sets were overlaid onto protein-protein interaction maps to identify metal-induced transcriptional networks. Interestingly, both metal-induced networks were significantly enriched for proteins involved in common biological processes such as tumorigenesis, inflammation, and cell signaling. These findings were further supported by gene set enrichment analysis. CONCLUSIONS: This study is the first to compare the transcriptional responses induced by low dose exposure to cadmium and arsenic in human lymphoblastoid cells. These results highlight that even at low levels of exposure both metals can dramatically influence the expression of important cellular pathways.
Assuntos
Arsênio/toxicidade , Cádmio/toxicidade , Hibridização Genômica Comparativa , Perfilação da Expressão Gênica , Linhagem Celular , Regulação da Expressão Gênica , Genômica/métodos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Mapeamento de Interação de Proteínas , Fatores de Transcrição/genética , Transcrição GênicaRESUMO
Inorganic arsenic (iAs) is an environmental toxicant currently poisoning millions of people worldwide, and chronically exposed individuals are susceptible to arsenicosis or arsenic poisoning. Using a state-of-the-art technique to map the methylomes of our study subjects, we identified a large interactome of hypermethylated genes that are enriched for their involvement in arsenic-associated diseases, such as cancer, heart disease, and diabetes. Notably, we have uncovered an arsenic-induced tumor suppressorome, a complex of 17 tumor suppressors known to be silenced in human cancers. This finding represents a pivotal clue in unraveling a possible epigenetic mode of arsenic-induced disease.
Assuntos
Intoxicação por Arsênico/genética , Arsênio/toxicidade , Epigênese Genética , Poluentes Químicos da Água/toxicidade , Ilhas de CpG , Metilação de DNA , Exposição Ambiental/efeitos adversos , Humanos , México , Abastecimento de ÁguaRESUMO
INTRODUCTION: Placental inflammation is associated with a variety of adverse health outcomes, including poor pregnancy outcomes as well as later in life health. The current clinical methodologies for evaluating placental histology for inflammation are limited in their sensitivity. The objective of this study was to develop a genomic inflammatory index (GII) that can be utilized as a biomarker to effectively quantify and evaluate placental inflammation. METHODS: RNA-sequencing of n = 386 placentas from the Extremely Low Gestational Age Newborn (ELGAN) cohort was conducted. Transcriptional data for a biologically-targeted set of 14 genes, selected for their established role in pro-inflammatory signaling pathways, were aggregated to construct the GII. Multiple linear regression models were used to examine relationships between 47 perinatal factors and the GII. RESULTS: The GII demonstrated a nine-fold difference across subjects and displayed positive trends with other indicators of placental inflammation. Significant differences in the GII were observed for race where women who self-identified as Black displayed higher levels of placental inflammation than those who self-identified as White women (p < 0.001). Additionally, married Black women showed reduced placental inflammation compared to those who were unmarried (beta value: 0.828, p-value: 0.032). Placentas from women who were treated with steroids during the delivery of the infant displayed higher GII levels than those who were not (p = 0.023). DISCUSSION: Overall, the GII demonstrated an association between various perinatal factors and placental inflammation. It is anticipated that the GII will provide a novel genomics tool for quantifying placental inflammation, allowing for further investigation of causes, and ultimately the prevention, of inflammation in the placenta.
Assuntos
Corioamnionite/metabolismo , Placenta/metabolismo , Índice de Gravidade de Doença , Adulto , Corioamnionite/genética , Estudos de Coortes , Feminino , Febre , Expressão Gênica , Humanos , Casamento , Gravidez , Grupos Raciais , Esteroides , Adulto JovemRESUMO
Pre-pregnancy body mass index (BMI) is associated with adverse pregnancy and neonatal health outcomes, with differences in risk observed between sexes. Given that the placenta is a sexually dimorphic organ and critical regulator of development, examining differences in placental mRNA and miRNA expression in relation to pre-pregnancy BMI may provide insight into responses to maternal BMI in utero. Here, genome-wide mRNA and miRNA expression levels were assessed in the placentas of infants born extremely preterm. Differences in expression were evaluated according to pre-pregnancy BMI status (1) overall and (2) in male and female placentas separately. Overall, 719 mRNAs were differentially expressed in relation to underweight status. Unexpectedly, no genes were differentially expressed in relation to overweight or obese status. In male placentas, 572 mRNAs were associated with underweight status, with 503 (70%) overlapping genes identified overall. Notably, 43/572 (8%) of the mRNAs associated with underweight status in male placentas were also gene targets of two miRNAs (miR-4057 and miR-128-1-5p) associated with underweight status in male placentas. Pathways regulating placental nutrient metabolism and angiogenesis were among those enriched in mRNAs associated with underweight status in males. This study is among the first to highlight a sexually dimorphic response to low pre-pregnancy BMI in the placenta.