Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 49(1): 137-140, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134171

RESUMO

Micro-joule UV-range (350-415 nm) femtosecond-laser pulses generated via frequency-doubled parametric conversion of 525-nm 150-fs pulses of Yb-glass laser were used for "hot" photoluminescence excitation in a diamond plate enriched by blue-emitting N3-centers (zero-phonon line, ZPL, at 415 nm). Photoluminescence spectra acquired in the range of 400-500 nm exhibited wavelength-independent well-resolved ZPL and phonon progression bands, where the involved phonons possessed the only energies of 0.09 eV (LA-phonons) and 0.15 eV (softened LO/TO-phonons), potentially, as a result of a Clemens decay mechanism. Photoluminescence yield in the ZPL and other phonon bands exhibited the power slope of 1.8 at lower energies and ≈1 at higher energies. The transition zone at fluence ∼1014-15 photons/cm2 was related to the saturation of the pumped resonance transition and the slower non-radiative vibrational relaxation to the ZPL-related excited electronic state and the nanosecond spontaneous photoluminescence transition to the ground state. As a result, the absorption cross section σ(370-390 nm) ≈1·10-15 cm2 and concentration [N3] ≈6·1014 cm-3 were determined along with the ZPL absorption cross section σ(415 nm) ≈2.5·10-15 cm2, and the non-radiative vibrational relaxation rate was estimated, providing altogether the crucial information on lasing possibilities in N3-doped diamonds.

2.
Sensors (Basel) ; 23(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37430576

RESUMO

Experiments show activation of the left dorsolateral prefrontal cortex (DLPFC) in motor imagery (MI) tasks, but its functional role requires further investigation. Here, we address this issue by applying repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC and evaluating its effect on brain activity and the latency of MI response. This is a randomized, sham-controlled EEG study. Participants were randomly assigned to receive sham (15 subjects) or real high-frequency rTMS (15 subjects). We performed EEG sensor-level, source-level, and connectivity analyses to evaluate the rTMS effects. We revealed that excitatory stimulation of the left DLPFC increases theta-band power in the right precuneus (PrecuneusR) via the functional connectivity between them. The precuneus theta-band power negatively correlates with the latency of the MI response, so the rTMS speeds up the responses in 50% of participants. We suppose that posterior theta-band power reflects attention modulation of sensory processing; therefore, high power may indicate attentive processing and cause faster responses.


Assuntos
Córtex Pré-Frontal Dorsolateral , Estimulação Magnética Transcraniana , Humanos , Ritmo Teta , Imagens, Psicoterapia , Projetos de Pesquisa
3.
Opt Lett ; 46(3): 697-700, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33528444

RESUMO

Spectral broadening of 0.3 ps 515 nm laser pulse in a highly Raman-active BaWO4 crystal and fused silica demonstrates significantly different behavior with the incident pulse energy. While the broadening in fused silica is fairly symmetric with respect to the pump laser pulse wavelength, the Stokes wing broadening in the BaWO4 crystal is 2 times wider than that of anti-Stokes wing, the former demonstrating a step-like increase with the pulse energy. To the best of our knowledge, the obtained data are the first clear evidences of the following facts: (i) stimulated Raman scattering with sufficiently high efficiency of conversion to Stokes components slows down spectral broadening induced by self-phase modulation, and (ii) the mechanism of Kerr nonlinearity, which is responsible for self-phase modulation in BaWO4, is of orientational nature. The nonlinear refraction coefficient and its decay time following from our experiments with BaWO4 were estimated as n2≈6.4.10-15cm2/W and τNL≈0.35ps.

4.
Sensors (Basel) ; 21(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671694

RESUMO

Autonomous vehicles are expected to display human-like behavior, at least to the extent that their decisions can be intuitively understood by other road users. If this is not the case, the coexistence of manual and autonomous vehicles in a mixed environment might affect road user interactions negatively and might jeopardize road safety. To this end, it is highly important to design algorithms that are capable of analyzing human decision-making processes and of reproducing them. In this context, lane-change maneuvers have been studied extensively. However, not all potential scenarios have been considered, since most works have focused on highway rather than urban scenarios. We contribute to the field of research by investigating a particular urban traffic scenario in which an autonomous vehicle needs to determine the level of cooperation of the vehicles in the adjacent lane in order to proceed with a lane change. To this end, we present a game theory-based decision-making model for lane changing in congested urban intersections. The model takes as input driving-related parameters related to vehicles in the intersection before they come to a complete stop. We validated the model by relying on the Co-AutoSim simulator. We compared the prediction model outcomes with actual participant decisions, i.e., whether they allowed the autonomous vehicle to drive in front of them. The results are promising, with the prediction accuracy being 100% in all of the cases in which the participants allowed the lane change and 83.3% in the other cases. The false predictions were due to delays in resuming driving after the traffic light turned green.

5.
Sci Rep ; 14(1): 7326, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538673

RESUMO

Quantum processors using superconducting qubits suffer from dielectric loss leading to noise and dissipation. Qubits are usually designed as large capacitor pads connected to a non-linear Josephson junction (or SQUID) by a superconducting thin metal wiring. Here, we report on finite-element simulation and experimental results confirming that more than 50% of surface loss in transmon qubits can originate from Josephson junctions wiring and can limit qubit relaxation time. We experimentally extracted dielectric loss tangents of qubit elements and showed that dominant surface loss of wiring can occur for real qubits designs. Finally, we experimentally demonstrate up to 20% improvement in qubit quality factor by wiring design optimization.

6.
Nanomaterials (Basel) ; 13(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110932

RESUMO

Optical-range bulk diffraction nanogratings were fabricated via challenging direct inscription by ultrashort (femtosecond, fs) laser pulses inside heat-shrinkable polymers (thermoplastics) and VHB 4905 elastomer. The inscribed bulk material modifications do not emerge on the polymer surface, being visualized inside the materials by 3D-scanning confocal photoluminescence/Raman microspectroscopy and by the multi-micron penetrating 30-keV electron beam in scanning electron microscopy. The laser-inscribed bulk gratings have multi-micron periods in the pre-stretched material after the second laser inscription step, with their periods continuously reduced down to 350 nm on the third fabrication step, using thermal shrinkage for thermoplastics and elastic properties for elastomers. This three-step process allows facile laser micro-inscription of diffraction patterns and their following controlled scaling down as a whole pattern to pre-determined dimensions. In elastomers, utilizing the initial stress anisotropy, the post-radiation elastic shrinkage along the given axes could be precisely controlled until the 28-nJ threshold fs-laser pulse energy, where elastomer deformation ability is dramatically reduced, producing wrinkled patterns. In thermoplastics, the fs-laser inscription does not affect their heat-shrinkage deformation up to the carbonization threshold. The measured diffraction efficiency of the inscribed gratings increases during the elastic shrinkage for the elastomers and slightly decreases for the thermoplastics. High 10% diffraction efficiency was demonstrated for the VHB 4905 elastomer at the 350 nm grating period. No significant molecular-level structural modifications were observed by Raman micro-spectroscopy in the inscribed bulk gratings in the polymers. This novel few-step method paves the way for facile and robust ultrashort-pulse laser inscription of bulk functional optical elements in polymeric materials for diffraction, holographic and virtual reality devices.

7.
Sci Rep ; 13(1): 4174, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914735

RESUMO

The most commonly used physical realization of superconducting qubits for quantum circuits is a transmon. There are a number of superconducting quantum circuits applications, where Josephson junction critical current reproducibility over a chip is crucial. Here, we report on a robust chip scale Al/AlOx/Al junctions fabrication method due to comprehensive study of shadow evaporation and oxidation steps. We experimentally demonstrate the evidence of optimal Josephson junction electrodes thickness, deposition rate and deposition angle, which ensure minimal electrode surface and line edge roughness. The influence of oxidation method, pressure and time on critical current reproducibility is determined. With the proposed method we demonstrate Al/AlOx/Al junction fabrication with the critical current variation [Formula: see text] less than 3.9% (from 150 × 200 to 150 × 600 nm2 area) and 7.7% (for 100 × 100 nm2 area) over 20 × 20 mm2 chip. Finally, we fabricate separately three 5 × 10 mm2 chips with 18 transmon qubits (near 4.3 GHz frequency) showing less than 1.9% frequency variation between qubits on different chips. The proposed approach and optimization criteria can be utilized for a robust wafer-scale superconducting qubit circuits fabrication.

8.
Micromachines (Basel) ; 14(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37512611

RESUMO

Inscription of embedded photoluminescent microbits inside micromechanically positioned bulk natural diamond, LiF and CaF2 crystals was performed in sub-filamentation (geometrical focusing) regime by 525 nm 0.2 ps laser pulses focused by 0.65 NA micro-objective as a function of pulse energy, exposure and inter-layer separation. The resulting microbits were visualized by 3D-scanning confocal Raman/photoluminescence microscopy as conglomerates of photo-induced quasi-molecular color centers and tested regarding their spatial resolution and thermal stability via high-temperature annealing. Minimal lateral and longitudinal microbit separations, enabling their robust optical read-out through micromechanical positioning, were measured in the most promising crystalline material, LiF, as 1.5 and 13 microns, respectively, to be improved regarding information storage capacity by more elaborate focusing systems. These findings pave a way to novel optomechanical memory storage platforms, utilizing ultrashort-pulse laser inscription of photoluminescent microbits as carriers of archival memory.

9.
Nanomaterials (Basel) ; 13(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36616102

RESUMO

The ultrashort-laser photoexcitation and structural modification of buried atomistic optical impurity centers in crystalline diamonds are the key enabling processes in the fabrication of ultrasensitive robust spectroscopic probes of electrical, magnetic, stress, temperature fields, and single-photon nanophotonic devices, as well as in "stealth" luminescent nano/microscale encoding in natural diamonds for their commercial tracing. Despite recent remarkable advances in ultrashort-laser predetermined generation of primitive optical centers in diamonds even on the single-center level, the underlying multi-scale basic processes, rather similar to other semiconductors and dielectrics, are almost uncovered due to the multitude of the involved multi-scale ultrafast and spatially inhomogeneous optical, electronic, thermal, and structural elementary events. We enlighten non-linear wavelength-, polarization-, intensity-, pulsewidth-, and focusing-dependent photoexcitation and energy deposition mechanisms in diamonds, coupled to the propagation of ultrashort laser pulses and ultrafast off-focus energy transport by electron-hole plasma, transient plasma- and hot-phonon-induced stress generation and the resulting variety of diverse structural atomistic modifications in the diamond lattice. Our findings pave the way for new forthcoming groundbreaking experiments and comprehensive enlightening two-temperature and/or atomistic modeling both in diamonds and other semiconductor/dielectric materials, as well as innovative technological breakthroughs in the field of single-photon source fabrication and "stealth" luminescent nano/microencoding in bulk diamonds for their commercial tracing.

10.
Micromachines (Basel) ; 14(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37512708

RESUMO

Tightly focused 515-nm, 0.3-ps laser pulses modify in a laser filamentation regime the crystalline structure of an Ib-type high-pressure, high-temperature (HPHT) synthesized diamond in a thin-plate form. The modified microregions (micromarks) in the yellow and colorless crystal zones, possessing different concentrations of elementary substitutional nitrogen (N) impurity atoms (C-centers), exhibit their strongly diminished local IR absorption (upon correction to the thickness scaling factor). Simultaneously, local visible-range (400-550 nm) absorption coefficients were increased, and photoluminescence (PL) yield was strongly enhanced in the broad range of 450-800 nm. The strong yellow-red PL enhancement saturates with laser exposure, implying the complete conversion of C-centers into nitrogen-vacancy (NV0,-) ones due to the laser-induced generation of Frenkel "interstitial-vacancy" I-V carbon pairs. The other emerging blue-green (>470 nm) and green-yellow (>500 nm) PL bands were also simultaneously saturated versus the laser exposure. The observed IR/optical absorption and PL spectral changes enlighten the ultrashort pulse laser inscription of NV0--based quantum-emitter centers in synthetic diamonds and enable the evaluation of the productivity of their inscription along with the corresponding I-V generation rates.

11.
Sci Rep ; 13(1): 6772, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185459

RESUMO

Josephson superconducting qubits and parametric amplifiers are prominent examples of superconducting quantum circuits that have shown rapid progress in recent years. As such devices become more complex, the requirements for reproducibility of their electrical properties across a chip are being tightened. Critical current of the Josephson junction Ic is the essential electrical parameter in a chip. So, its variation is to be minimized. According to the Ambegaokar-Baratoff formula, critical current is related to normal-state resistance, which can be measured at room temperature. In this study, we focused on the dominant source of non-uniformity for the Josephson junction critical current-junction area variation. We optimized Josephson junction fabrication process and demonstrated resistance variation of 9.8-4.4% and 4.8-2.3% across 22 × 22 mm2 and 5 × 10 mm2 chip areas, respectively. For a wide range of junction areas from 0.008 to 0.12 µm2, we ensure a small linewidth standard deviation of 4 nm measured over 4500 junctions with linear dimensions from 80 to 680 nm. We found that the dominate source of junction area variation limiting [Formula: see text] reproducibility is the imperfection of the evaporation system. The developed fabrication process was tested on superconducting highly coherent transmon qubits (T1 > 100 µs) and a nonlinear asymmetric inductive element parametric amplifier.

12.
Sci Rep ; 12(1): 11474, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794223

RESUMO

Epilepsy is one of the brightest manifestations of extreme behavior in living systems. Extreme epileptic events are seizures, that arise suddenly and unpredictably. Usually, treatment strategies start by analyzing brain activity during the seizures revealing their type and onset mechanisms. This approach requires collecting data for a representative number of events which is only possible during the continuous EEG monitoring over several days. A big part of the further analysis is searching for seizures on these recordings. An experienced medical specialist spends hours checking the data of a single patient and needs assistance from the automative systems for seizure detection. Machine learning methods typically address this issue in a supervised fashion and exhibit a lack of generalization. The extreme value theory allows addressing this issue with the unsupervised machine learning methods of outlier detection. Here, we make the first step toward using this approach for the seizure detection. Based on our recent work, we specified the EEG features showing extreme behavior during seizures and loaded them to the one-class SVM, a popular outlier detection algorithm. Testing the proposed approach on 83 patients, we reported 77% sensitivity and 12% precision. In 60 patients, sensitivity was 100%. In the rest 23 subjects, we observed deviations from the extreme behavior. The one-class SVM used a single subject's data for training; therefore, it was stable against between-subject variability. Our results demonstrate an effective convergence between the extreme value theory, a physical concept, and the outlier detection algorithms, a machine learning concept, toward solving the meaningful task of medicine.


Assuntos
Eletroencefalografia , Epilepsia , Algoritmos , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Humanos , Aprendizado de Máquina , Convulsões/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA