Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 39(6): e1700681, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29292560

RESUMO

Copoly(2-nonyl-2-oxazoline)-stat-poly(2-dec-9'enyl-2-oxazoline)s can be crosslinked by the thiol-ene reaction with glycol dimercaptoacetate. The copoly(2-oxazoline)-stat-copolyester is tested as dielectric for high-voltage applications, either as unfilled resin or as composite with nanoscaled fillers of silica, alumina, and hexagonal boron nitride. During AC voltage tests, all materials have an average breakdown strength of 45-50 kV mm-1 . For DC voltage tests, samples with SiO2 (hBN) have an average breakdown strength of ≈100 (80) kV mm-1 , while the unfilled copoly(2-oxazoline) has an average breakdown strength of ≈60 kV mm-1 . Permittivity measurements at 20 °C and 50 Hz reveal that all nanocomposites are dielectrics (D = 0.06-0.08), while the unfilled copoly(2-oxazoline)s has a high loss factor of D = 8.43. This phenomenon can be retraced to the phase separation in the crosslinked copolymer, the M-OH functionality of silica and alumina particles, and models of polymer-particle interactions such as the Tanaka model, revealing that the nanofillers reduce the interfacial and dipolar polarizability.


Assuntos
Nanocompostos/química , Oxazóis/química , Poliésteres/química , Polímeros/química
2.
Polymers (Basel) ; 9(6)2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30970872

RESUMO

Five types of nanofillers, namely, silica, surface-silylated silica, alumina, surface-silylated alumina, and boron nitride, were tested in this study. Nanocomposites composed of an epoxy/amine resin and one of the five types of nanoparticles were tested as dielectrics with a focus on (i) the surface functionalization of the nanoparticles and (ii) the water absorption by the materials. The dispersability of the nanoparticles in the resin correlated with the composition (OH content) of their surfaces. The interfacial polarization of the thoroughly dried samples was found to increase at lowered frequencies and increased temperatures. The ß relaxation, unlike the interfacial polarization, was not significantly increased at elevated temperatures (below the glass-transition temperature). Upon the absorption of water under ambient conditions, the interfacial polarization increased significantly, and the insulating properties decreased or even deteriorated. This effect was most pronounced in the nanocomposite containing silica, and occurred as well in the nanocomposites containing silylated silica or non-functionalized alumina. The alternating current (AC) breakdown strength of all specimens was in the range of 30 to 35 kV·mm-1. In direct current (DC) breakdown tests, the epoxy resin exhibited the lowest strength of 110 kV·mm-1; the nanocomposite containing surface-silylated alumina had a strength of 170 kV·mm-1. In summary, water absorption had the most relevant impact on the dielectric properties of nanocomposites containing nanoparticles, the surfaces of which interacted with the water molecules. Nanocomposites containing silylated alumina particles or boron nitride showed the best dielectric properties in this study.

3.
Polymers (Basel) ; 8(1)2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30979103

RESUMO

Poly(2-nonyl-2-oxazoline)80-stat-poly(2-dec-9'-enyl-2-oxazoline)20 and poly(2-dec-9'-enyl-2-oxazoline)100 can be synthesized from the cationic ring-opening polymerization of monomers that can be derived from fatty acids from renewable resources. These (co)poly(2-oxazoline)s can be crosslinked with di- and trifunctional mercapto compounds using the UV-induced thiol-ene reaction. The complex permittivity of the corresponding networks increases with the temperature and decreases with the network density. In a frequency range from 10-2 to 106 Hz and at temperatures ranging from -20 to 40 °C, the changes of the real part of the complex permittivity as well as the loss factor can be explained by interfacial polarization within the material. At a temperature of 20 °C and a frequency of 50 Hz, the permittivity of the crosslinked (co)poly(2-oxazoline)s covers a range from 4.29 to 4.97, and the loss factors are in the range from 0.030 to 0.093. The electrical conductivities of these polymer networks span a range from 5 × 10-12 to 8 × 10-9 S/m, classifying these materials as medium insulators. Notably, the values for the permittivity, loss factor and conductivity of these copoly(2-oxazoline)s are in the same range as for polyamides, and, hence, these copoly(2-oxazoline)-based networks may be referred to as "green" alternatives for polyamides as insulators in electronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA