Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 14(1): 49, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949528

RESUMO

BACKGROUND: Therapeutic interventions that optimize angiogenic activities may reduce rates of end-stage kidney disease, critical limb ischemia, and lower extremity amputations in individuals with diabetic kidney disease (DKD). Infusion of autologous mesenchymal stromal cells (MSC) is a promising novel therapy to rejuvenate vascular integrity. However, DKD-related factors, including hyperglycemia and uremia, might alter MSC angiogenic repair capacity in an autologous treatment approach. METHODS: To explore the angiogenic activity of MSC in DKD, the transcriptome of adipose tissue-derived MSC obtained from DKD subjects was compared to age-matched controls without diabetes or kidney impairment. Next-generation RNA sequencing (RNA-seq) was performed on MSC (DKD n = 29; Controls n = 9) to identify differentially expressed (DE; adjusted p < 0.05, |log2fold change|> 1) messenger RNA (mRNA) and microRNA (miRNA) involved in angiogenesis (GeneCards). Paracrine-mediated angiogenic repair capacity of MSC conditioned medium (MSCcm) was assessed in vitro using human umbilical vein endothelial cells incubated in high glucose and indoxyl sulfate for a hyperglycemic, uremic state. RESULTS: RNA-seq analyses revealed 133 DE mRNAs (77 upregulated and 56 down-regulated) and 208 DE miRNAs (119 up- and 89 down-regulated) in DKD-MSC versus Control-MSC. Interestingly, miRNA let-7a-5p, which regulates angiogenesis and participates in DKD pathogenesis, interacted with 5 angiogenesis-associated mRNAs (transgelin/TAGLN, thrombospondin 1/THBS1, lysyl oxidase-like 4/LOXL4, collagen 4A1/COL4A1 and collagen 8A1/COL8A1). DKD-MSCcm incubation with injured endothelial cells improved tube formation capacity, enhanced migration, reduced adhesion molecules E-selectin, vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 mRNA expression in endothelial cells. Moreover, angiogenic repair effects did not differ between treatment groups (DKD-MSCcm vs. Control-MSCcm). CONCLUSIONS: MSC from individuals with DKD show angiogenic transcriptome alterations compared to age-matched controls. However, angiogenic repair potential may be preserved, supporting autologous MSC interventions to treat conditions requiring enhanced angiogenic activities such as DKD, diabetic foot ulcers, and critical limb ischemia.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/terapia , Nefropatias Diabéticas/metabolismo , Isquemia Crônica Crítica de Membro , Transcriptoma , Neovascularização Fisiológica/genética , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , RNA Mensageiro/metabolismo , Diabetes Mellitus/metabolismo , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo
2.
Gene ; 800: 145836, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34280510

RESUMO

Skeletal muscle atrophy can result from a range of physiological conditions, including denervation, immobilization, hindlimb unweighting, and aging. To better characterize the molecular genetic events of atrophy, a microarray analysis revealed that FGGY carbohydrate kinase domain containing (Fggy) is expressed in skeletal muscle and is induced in response to denervation. Bioinformatic analysis of the Fggy gene locus revealed two validated isoforms with alternative transcription initiation sites that we have designated Fggy-L-552 and Fggy-S-387. Additionally, we cloned two novel alternative splice variants, designated Fggy-L-482 and Fggy-S-344, from cultured muscle cells suggesting that at least four Fggy splice variants are expressed in skeletal muscle. Quantitative RT-PCR was performed using RNA isolated from muscle cells and primers designed to distinguish the four alternative Fggy transcripts and found that the Fggy-L transcripts are more highly expressed during myoblast differentiation, while the Fggy-S transcripts show relatively stable expression in proliferating myoblasts and differentiated myotubes. Confocal fluorescent microscopy revealed that the Fggy-L variants appear to localize evenly throughout the cytoplasm, while the Fggy-S variants produce a more punctuate cytoplasmic localization pattern in proliferating muscle cells. Finally, ectopic expression of Fggy-L-552 and Fggy-S-387 resulted in inhibition of muscle cell differentiation and attenuation of the MAP kinase and Akt signaling pathways. The identification and characterization of novel genes such as Fggy helps to improve our understanding of the molecular and cellular events that lead to atrophy and may eventually result in the identification of new therapeutic targets for the treatment of muscle wasting.


Assuntos
Músculo Esquelético/enzimologia , Atrofia Muscular/genética , Fosfotransferases/genética , Fosfotransferases/metabolismo , Sítios de Splice de RNA , Animais , Diferenciação Celular/genética , Células Cultivadas , Citoplasma/enzimologia , Regulação Enzimológica da Expressão Gênica , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Mioblastos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA