Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Am J Respir Cell Mol Biol ; 70(4): 283-294, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38207120

RESUMO

Bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, is characterized by impaired lung development with sustained functional abnormalities due to alterations of airways and the distal lung. Although clinical studies have shown striking associations between antenatal stress and BPD, little is known about the underlying pathogenetic mechanisms. Whether dysanapsis, the concept of discordant growth of the airways and parenchyma, contributes to late respiratory disease as a result of antenatal stress is unknown. We hypothesized that antenatal endotoxin (ETX) impairs juvenile lung function as a result of altered central airway and distal lung structure, suggesting the presence of dysanapsis in this preclinical BPD model. Fetal rats were exposed to intraamniotic ETX (10 µg) or saline solution (control) 2 days before term. We performed extensive structural and functional evaluation of the proximal airways and distal lung in 2-week-old rats. Distal lung structure was quantified by stereology. Conducting airway diameters were measured using micro-computed tomography. Lung function was assessed during invasive ventilation to quantify baseline mechanics, response to methacholine challenge, and spirometry. ETX-exposed pups exhibited distal lung simplification, decreased alveolar surface area, and decreased parenchyma-airway attachments. ETX-exposed pups exhibited decreased tracheal and second- and third-generation airway diameters. ETX increased respiratory system resistance and decreased lung compliance at baseline. Only Newtonian resistance, specific to large airways, exhibited increased methacholine reactivity in ETX-exposed pups compared with controls. ETX-exposed pups had a decreased ratio of FEV in 0.1 second to FVC and a normal FEV in 0.1 second, paralleling the clinical definition of dysanapsis. Antenatal ETX causes abnormalities of the central airways and distal lung growth, suggesting that dysanapsis contributes to abnormal lung function in juvenile rats.


Assuntos
Displasia Broncopulmonar , Ratos , Animais , Feminino , Gravidez , Displasia Broncopulmonar/patologia , Endotoxinas , Cloreto de Metacolina/farmacologia , Microtomografia por Raio-X , Ratos Sprague-Dawley , Animais Recém-Nascidos , Pulmão/patologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38712433

RESUMO

Quantitative characterization of lung structures by morphometric or stereologic analysis of histologic sections is a powerful means of elucidating pulmonary structure-function relations. The overwhelming majority of studies, however, fix lungs for histology at pressures outside the physiologic/pathophysiologic respiratory volume range. Thus valuable information is being lost. In this perspective article, we argue that investigators performing pulmonary histologic studies should consider whether the aims of their studies would benefit from fixation at functional transpulmonary pressures, particular those of end-inspiration and end-expiration. We survey the pressures at which lungs are typically fixed in preclinical structure-function studies; provide examples of conditions that would benefit from histologic evaluation at functional lung volumes; summarize available fixation methods; discuss alternative imaging modalities; and discuss challenges to implementing the suggested approach and means of addressing those challenges. We aim to persuade investigators that modifying or complementing the traditional histologic approach by fixing lungs at minimal and maximal functional volumes could enable new understanding of pulmonary structure-function relations.

3.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L19-L39, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38712429

RESUMO

Mechanical ventilation can cause ventilation-induced lung injury (VILI). The concept of stress concentrations suggests that surfactant dysfunction-induced microatelectases might impose injurious stresses on adjacent, open alveoli and function as germinal centers for injury propagation. The aim of the present study was to quantify the histopathological pattern of VILI progression and to test the hypothesis that injury progresses at the interface between microatelectases and ventilated lung parenchyma during low-positive end-expiratory pressure (PEEP) ventilation. Bleomycin was used to induce lung injury with microatelectases in rats. Lungs were then mechanically ventilated for up to 6 h at PEEP = 1 cmH2O and compared with bleomycin-treated group ventilated protectively with PEEP = 5 cmH2O to minimize microatelectases. Lung mechanics were measured during ventilation. Afterward, lungs were fixed at end-inspiration or end-expiration for design-based stereology. Before VILI, bleomycin challenge reduced the number of open alveoli [N(alvair,par)] by 29%. No differences between end-inspiration and end-expiration were observed. Collapsed alveoli clustered in areas with a radius of up to 56 µm. After PEEP = 5 cmH2O ventilation for 6 h, N(alvair,par) remained stable while PEEP = 1 cmH2O ventilation led to an additional loss of aerated alveoli by 26%, mainly due to collapse, with a small fraction partly edema filled. Alveolar loss strongly correlated to worsening of tissue elastance, quasistatic compliance, and inspiratory capacity. The radius of areas of collapsed alveoli increased to 94 µm, suggesting growth of the microatelectases. These data provide evidence that alveoli become unstable in neighborhood of microatelectases, which most likely occurs due to stress concentration-induced local vascular leak and surfactant dysfunction.NEW & NOTEWORTHY Low-volume mechanical ventilation in the presence of high surface tension-induced microatelectases leads to the degradation of lung mechanical function via the progressive loss of alveoli. Microatelectases grow at the interfaces of collapsed and open alveoli. Here, stress concentrations might cause injury and alveolar instability. Accumulation of small amounts of alveolar edema can be found in a fraction of partly collapsed alveoli but, in this model, alveolar flooding is not a major driver for degradation of lung mechanics.


Assuntos
Respiração com Pressão Positiva , Alvéolos Pulmonares , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologia , Ratos , Masculino , Respiração com Pressão Positiva/métodos , Respiração com Pressão Positiva/efeitos adversos , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/fisiopatologia , Bleomicina/toxicidade , Bleomicina/efeitos adversos , Ratos Sprague-Dawley , Pulmão/patologia , Pulmão/fisiopatologia , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Mecânica Respiratória , Atelectasia Pulmonar/patologia , Atelectasia Pulmonar/fisiopatologia
4.
J Biomed Inform ; 137: 104275, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36572279

RESUMO

Mechanical ventilation is an essential tool in the management of Acute Respiratory Distress Syndrome (ARDS), but it exposes patients to the risk of ventilator-induced lung injury (VILI). The human lung-ventilator system (LVS) involves the interaction of complex anatomy with a mechanical apparatus, which limits the ability of process-based models to provide individualized clinical support. This work proposes a hypothesis-driven strategy for LVS modeling in which robust personalization is achieved using a pre-defined parameter basis in a non-physiological model. Model inversion, here via windowed data assimilation, forges observed waveforms into interpretable parameter values that characterize the data rather than quantifying physiological processes. Accurate, model-based inference on human-ventilator data indicates model flexibility and utility over a variety of breath types, including those from dyssynchronous LVSs. Estimated parameters generate static characterizations of the data that are 50%-70% more accurate than breath-wise single-compartment model estimates. They also retain sufficient information to distinguish between the types of breath they represent. However, the fidelity and interpretability of model characterizations are tied to parameter definitions and model resolution. These additional factors must be considered in conjunction with the objectives of specific applications, such as identifying and tracking the development of human VILI.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Respiração Artificial/efeitos adversos , Síndrome do Desconforto Respiratório/etiologia , Ventiladores Mecânicos , Lesão Pulmonar Induzida por Ventilação Mecânica/etiologia , Pulmão
5.
Nanomedicine ; 50: 102679, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116556

RESUMO

Acute respiratory distress syndrome (ARDS) has high mortality (~40 %) and requires the lifesaving intervention of mechanical ventilation. A variety of systemic inflammatory insults can progress to ARDS, and the inflamed and injured lung is susceptible to ventilator-induced lung injury (VILI). Strategies to mitigate the inflammatory response while restoring pulmonary function are limited, thus we sought to determine if treatment with CNP-miR146a, a conjugate of novel free radical scavenging cerium oxide nanoparticles (CNP) to the anti-inflammatory microRNA (miR)-146a, would protect murine lungs from acute lung injury (ALI) induced with intratracheal endotoxin and subsequent VILI. Lung injury severity and treatment efficacy were evaluated via lung mechanical function, relative gene expression of inflammatory biomarkers, and lung morphometry (stereology). CNP-miR146a reduced the severity of ALI and slowed the progression of VILI, evidenced by improvements in inflammatory biomarkers, atelectasis, gas volumes in the parenchymal airspaces, and the stiffness of the pulmonary system.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Camundongos , Animais , Pulmão/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética
6.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L281-L296, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35700201

RESUMO

Supportive mechanical ventilation is a necessary lifesaving treatment for acute respiratory distress syndrome (ARDS). This intervention often leads to injury exacerbation by ventilator-induced lung injury (VILI). Patterns of injury in ARDS and VILI are recognized to be heterogeneous; however, quantification of these injury distributions remains incomplete. Developing a more detailed understanding of injury heterogeneity, particularly how it varies in space and time, can help elucidate the mechanisms of VILI pathogenesis. Ultimately, this knowledge can be used to develop protective ventilation strategies that slow disease progression. To expand existing knowledge of VILI heterogeneity, we document the spatial evolution of cellular injury distribution and leukocyte infiltration, on the micro- and macroscales, during protective and injurious mechanical ventilation. We ventilated naïve mice using either high inspiratory pressure and zero positive end-expiratory pressure ventilation or low tidal volume with positive end-expiratory pressure. Distributions of cellular injury, identified with propidium iodide staining, were microscopically analyzed at three levels of injury severity. Cellular injury initiated in diffuse, quasi-random patterns, and progressed through expansion of high-density regions of injured cells termed "injury clusters." The density profile of the expanding injury regions suggests that stress shielding occurs, protecting the already injured regions from further damage. Spatial distribution of leukocytes did not correlate with that of cellular injury or ventilation-induced changes in lung function. These results suggest that protective ventilation protocols should protect the interface between healthy and injured regions to stymie injury propagation.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Animais , Leucócitos , Camundongos , Respiração com Pressão Positiva/métodos , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
7.
Am J Physiol Lung Cell Mol Physiol ; 323(4): L391-L399, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35943156

RESUMO

The pathogenesis of chronic obstructive pulmonary disease (COPD), a prevalent disease primarily caused by cigarette smoke exposure, is incompletely elucidated. Studies in humans and mice have suggested that hypoxia-inducible factor-1α (HIF-1α) may play a role. Reduced lung levels of HIF-1α are associated with decreased vascular density, whereas increased leukocyte HIF-1α may be responsible for increased inflammation. To elucidate the specific role of leukocyte HIF-1α in COPD, we exposed transgenic mice with conditional deletion or overexpression of HIF-1α in leukocytes to cigarette smoke for 7 mo. Outcomes included pulmonary physiology, aerated lung volumes via microcomputed tomography, lung morphometry and histology, and cardiopulmonary hemodynamics. On aggregate, cigarette smoke increased the aerated lung volume, quasi-static lung compliance, inspiratory capacity of all strains while reducing the total alveolar septal volume. Independent of smoke exposure, mice with leukocyte-specific HIF-1α overexpression had increased quasi-static compliance, inspiratory capacity, and alveolar septal volume compared with mice with leukocyte-specific HIF-1α deletion. However, the overall development of cigarette smoke-induced lung disease did not vary relative to control mice for either of the conditional strains. This suggests that the development of murine cigarette smoke-induced airspace disease occurs independently of leukocyte HIF-1α signaling.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Modelos Animais de Doenças , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Leucócitos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/patologia , Nicotiana/efeitos adversos , Microtomografia por Raio-X
8.
Histochem Cell Biol ; 155(2): 183-202, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33188462

RESUMO

Mechanical ventilation triggers the manifestation of lung injury and pre-injured lungs are more susceptible. Ventilation-induced abnormalities of alveolar surfactant are involved in injury progression. The effects of mechanical ventilation on the surfactant system might be different in healthy compared to pre-injured lungs. In the present study, we investigated the effects of different positive end-expiratory pressure (PEEP) ventilations on the structure of the blood-gas barrier, the ultrastructure of alveolar epithelial type II (AE2) cells and the intracellular surfactant pool (= lamellar bodies, LB). Rats were randomized into bleomycin-pre-injured or healthy control groups. One day later, rats were either not ventilated, or ventilated with PEEP = 1 or 5 cmH2O and a tidal volume of 10 ml/kg bodyweight for 3 h. Left lungs were subjected to design-based stereology, right lungs to measurements of surfactant proteins (SP-) B and C expression. In pre-injured lungs without ventilation, the expression of SP-C was reduced by bleomycin; while, there were fewer and larger LB compared to healthy lungs. PEEP = 1 cmH2O ventilation of bleomycin-injured lungs was linked with the thickest blood-gas barrier due to increased septal interstitial volumes. In healthy lungs, increasing PEEP levels reduced mean AE2 cell size and volume of LB per AE2 cell; while in pre-injured lungs, volumes of AE2 cells and LB per cell remained stable across PEEPs. Instead, in pre-injured lungs, increasing PEEP levels increased the number and decreased the mean size of LB. In conclusion, mechanical ventilation-induced alterations in LB ultrastructure differ between healthy and pre-injured lungs. PEEP = 1 cmH2O but not PEEP = 5 cmH2O ventilation aggravated septal interstitial abnormalities after bleomycin challenge.


Assuntos
Barreira Alveolocapilar/metabolismo , Pneumopatias/metabolismo , Pulmão/metabolismo , Surfactantes Pulmonares/metabolismo , Respiração Artificial , Animais , Bleomicina , Pneumopatias/induzido quimicamente , Masculino , Ratos , Ratos Endogâmicos F344
9.
Am J Respir Crit Care Med ; 201(10): 1209-1217, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32197050

RESUMO

Rationale: Interstitial macrophages (IMs) and airspace macrophages (AMs) play critical roles in lung homeostasis and host defense, and are central to the pathogenesis of a number of lung diseases. However, the absolute numbers of macrophages and the precise anatomic locations they occupy in the healthy human lung have not been quantified.Objectives: To determine the precise number and anatomic location of human pulmonary macrophages in nondiseased lungs and to quantify how this is altered in chronic cigarette smokers.Methods: Whole right upper lobes from 12 human donors without pulmonary disease (6 smokers and 6 nonsmokers) were evaluated using design-based stereology. CD206 (cluster of differentiation 206)-positive/CD43+ AMs and CD206+/CD43- IMs were counted in five distinct anatomical locations using the optical disector probe.Measurements and Main Results: An average of 2.1 × 109 IMs and 1.4 × 109 AMs were estimated per right upper lobe. Of the AMs, 95% were contained in diffusing airspaces and 5% in airways. Of the IMs, 78% were located within the alveolar septa, 14% around small vessels, and 7% around the airways. The local density of IMs was greater in the alveolar septa than in the connective tissue surrounding the airways or vessels. The total number and density of IMs was 36% to 56% greater in the lungs of cigarette smokers versus nonsmokers.Conclusions: The precise locations occupied by pulmonary macrophages were defined in nondiseased human lungs from smokers and nonsmokers. IM density was greatest in the alveolar septa. Lungs from chronic smokers had increased IM numbers and overall density, supporting a role for IMs in smoking-related disease.


Assuntos
Fumar Cigarros/patologia , Pulmão/patologia , Macrófagos Alveolares/patologia , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Contagem de Células , Feminino , Humanos , Imuno-Histoquímica , Lectinas Tipo C/metabolismo , Leucossialina/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Pessoa de Meia-Idade , Dispositivos Ópticos , Receptores de Superfície Celular/metabolismo , Doadores de Tecidos
10.
Am J Respir Cell Mol Biol ; 63(1): 79-91, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32135073

RESUMO

Vitamin D deficiency (VDD) during pregnancy is associated with increased respiratory morbidities and risk for chronic lung disease after preterm birth. However, the direct effects of maternal VDD on perinatal lung structure and function and whether maternal VDD increases the susceptibility of lung injury due to hyperoxia are uncertain. In the present study, we sought to determine whether maternal VDD is sufficient to impair lung structure and function and whether VDD increases the impact of hyperoxia on the developing rat lung. Four-week-old rats were fed VDD chow and housed in a room shielded from ultraviolet A/B light to achieve 25-hydroxyvitamin D concentrations <10 ng/ml at mating and throughout lactation. Lung structure was assessed at 2 weeks for radial alveolar count, mean linear intercept, pulmonary vessel density, and lung function (lung compliance and resistance). The effects of hyperoxia for 2 weeks after birth were assessed after exposure to fraction of inspired oxygen of 0.95. At 2 weeks, VDD offspring had decreased alveolar and vascular growth and abnormal airway reactivity and lung function. Impaired lung structure and function in VDD offspring were similar to those observed in control rats exposed to postnatal hyperoxia alone. Maternal VDD causes sustained abnormalities of distal lung growth, increases in airway hyperreactivity, and abnormal lung mechanics during infancy. These changes in VDD pups were as severe as those measured after exposure to postnatal hyperoxia alone. We speculate that antenatal disruption of vitamin D signaling increases the risk for late-childhood respiratory disease.


Assuntos
Hiperóxia/complicações , Complacência Pulmonar/fisiologia , Lesão Pulmonar/etiologia , Pulmão/fisiopatologia , Deficiência de Vitamina D/complicações , Vitamina D/análogos & derivados , Animais , Animais Recém-Nascidos , Feminino , Hiperóxia/metabolismo , Pulmão/metabolismo , Lesão Pulmonar/metabolismo , Gravidez , Ratos , Vitamina D/metabolismo
11.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L693-L709, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783616

RESUMO

Many mouse models of allergic asthma exhibit eosinophil-predominant cellularity rather than the mixed-granulocytic cytology in steroid-unresponsive severe disease. Therefore, we sought to implement a novel mouse model of antigen-driven, mixed-granulocytic, severe allergic asthma to determine biomarkers of the disease process and potential therapeutic targets. C57BL/6J wild-type, interleukin-6 knockout (IL-6-/-), and IL-6 receptor knockout (IL-6R-/-), mice were injected with an emulsion of complete Freund's adjuvant and house dust mite antigen (CFA/HDM) on day 1. Dexamethasone, a lymphocyte-depleting biological, or anti-IL-17A was administered during the intranasal HDM challenge on days 19-22. On day 23, the CFA/HDM model elicited mixed bronchoalveolar lavage (BAL) cellularity (typically 80% neutrophils and 10% eosinophils), airway hyperresponsiveness (AHR) to methacholine, diffusion impairment, lung damage, body weight loss, corticosteroid resistance, and elevated levels of serum amyloid A (SAA), pro-inflammatory cytokines, and T helper type 1/ T helper type 17 (Th1/Th17) cytokines compared with eosinophilic models of HDM-driven allergic airway disease. BAL cells in IL-6- or IL-6R-deficient mice were predominantly eosinophilic and associated with elevated T helper type 2 (Th2) and reduced Th1/Th17 cytokine production, along with an absence of SAA. Nevertheless, AHR remained in IL-6-deficient mice even when dexamethasone was administered. However, combined administration of anti-IL-17A and systemic corticosteroid significantly attenuated both overall and neutrophilic airway inflammation and also reduced AHR and body weight loss. Inhibition of IL-17A combined with systemic corticosteroid treatment during antigen-driven exacerbations may provide a novel therapeutic approach to prevent the pathological pulmonary and constitutional changes that greatly impact patients with the mixed-granulocytic endotype of severe asthma.


Assuntos
Corticosteroides/farmacologia , Asma/tratamento farmacológico , Neutrófilos/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Alérgenos/efeitos dos fármacos , Alérgenos/imunologia , Animais , Asma/patologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/patologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Hipersensibilidade Respiratória/patologia , Células Th17/imunologia
14.
Int J Mol Sci ; 20(17)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480246

RESUMO

High surface tension at the alveolar air-liquid interface is a typical feature of acute and chronic lung injury. However, the manner in which high surface tension contributes to lung injury is not well understood. This study investigated the relationship between abnormal alveolar micromechanics, alveolar epithelial injury, intra-alveolar fluid properties and remodeling in the conditional surfactant protein B (SP-B) knockout mouse model. Measurements of pulmonary mechanics, broncho-alveolar lavage fluid (BAL), and design-based stereology were performed as a function of time of SP-B deficiency. After one day of SP-B deficiency the volume of alveolar fluid V(alvfluid,par) as well as BAL protein and albumin levels were normal while the surface area of injured alveolar epithelium S(AEinjure,sep) was significantly increased. Alveoli and alveolar surface area could be recruited by increasing the air inflation pressure. Quasi-static pressure-volume loops were characterized by an increased hysteresis while the inspiratory capacity was reduced. After 3 days, an increase in V(alvfluid,par) as well as BAL protein and albumin levels were linked with a failure of both alveolar recruitment and airway pressure-dependent redistribution of alveolar fluid. Over time, V(alvfluid,par) increased exponentially with S(AEinjure,sep). In conclusion, high surface tension induces alveolar epithelial injury prior to edema formation. After passing a threshold, epithelial injury results in vascular leakage and exponential accumulation of alveolar fluid critically hampering alveolar recruitability.


Assuntos
Células Epiteliais Alveolares/patologia , Líquido da Lavagem Broncoalveolar/química , Proteína B Associada a Surfactante Pulmonar/deficiência , Células Acinares/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/ultraestrutura , Animais , Fenômenos Biomecânicos , Doxiciclina/farmacologia , Feminino , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Pulmão/ultraestrutura , Camundongos Knockout , Modelos Biológicos , Proteína B Associada a Surfactante Pulmonar/metabolismo , Relação Estrutura-Atividade , Tensão Superficial
15.
Am J Respir Cell Mol Biol ; 59(6): 757-769, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30095988

RESUMO

Lung injury results in intratidal alveolar recruitment and derecruitment and alveolar collapse, creating stress concentrators that increase strain and aggravate injury. In this work, we sought to describe alveolar micromechanics during mechanical ventilation in bleomycin-induced lung injury and surfactant replacement therapy. Structure and function were assessed in rats 1 day and 3 days after intratracheal bleomycin instillation and after surfactant replacement therapy. Pulmonary system mechanics were measured during ventilation with positive end-expiratory pressures (PEEPs) between 1 and 10 cm H2O, followed by perfusion fixation at end-expiratory pressure at airway opening (Pao) values of 1, 5, 10, and 20 cm H2O for quantitative analyses of lung structure. Lung structure and function were used to parameterize a physiologically based, multicompartment computational model of alveolar micromechanics. In healthy controls, the numbers of open alveoli remained stable in a range of Pao = 1-20 cm H2O, whereas bleomycin-challenged lungs demonstrated progressive alveolar derecruitment with Pao < 10 cm H2O. At Day 3, ∼40% of the alveoli remained closed at high Pao, and alveolar size heterogeneity increased. Simulations of injured lungs predicted that alveolar recruitment pressures were much greater than the derecruitment pressures, so that minimal intratidal recruitment and derecruitment occurred during mechanical ventilation with a tidal volume of 10 ml/kg body weight over a range of PEEPs. However, the simulations also predicted a dramatic increase in alveolar strain with injury that we attribute to alveolar interdependence. These findings suggest that in progressive lung injury, alveolar collapse with increased distension of patent (open) alveoli dominates alveolar micromechanics. PEEP and surfactant substitution reduce alveolar collapse and dynamic strain but increase static strain.


Assuntos
Bleomicina/toxicidade , Lesão Pulmonar/tratamento farmacológico , Respiração com Pressão Positiva/métodos , Alvéolos Pulmonares/efeitos dos fármacos , Surfactantes Pulmonares/farmacologia , Mecânica Respiratória , Animais , Antibióticos Antineoplásicos/toxicidade , Modelos Animais de Doenças , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Alvéolos Pulmonares/patologia , Ratos , Respiração Artificial , Testes de Função Respiratória
16.
Crit Care Med ; 45(4): 687-694, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28107207

RESUMO

OBJECTIVES: Positive pressure ventilation exposes the lung to mechanical stresses that can exacerbate injury. The exact mechanism of this pathologic process remains elusive. The goal of this study was to describe recruitment/derecruitment at acinar length scales over short-time frames and test the hypothesis that mechanical interdependence between neighboring lung units determines the spatial and temporal distributions of recruitment/derecruitment, using a computational model. DESIGN: Experimental animal study. SETTING: International synchrotron radiation laboratory. SUBJECTS: Four anesthetized rabbits, ventilated in pressure controlled mode. INTERVENTIONS: The lung was consecutively imaged at ~ 1.5-minute intervals using phase-contrast synchrotron imaging, at positive end-expiratory pressures of 12, 9, 6, 3, and 0 cm H2O before and after lavage and mechanical ventilation induced injury. The extent and spatial distribution of recruitment/derecruitment was analyzed by subtracting subsequent images. In a realistic lung structure, we implemented a mechanistic model in which each unit has individual pressures and speeds of opening and closing. Derecruited and recruited lung fractions (Fderecruited, Frecruited) were computed based on the comparison of the aerated volumes at successive time points. MEASUREMENTS AND MAIN RESULTS: Alternative recruitment/derecruitment occurred in neighboring alveoli over short-time scales in all tested positive end-expiratory pressure levels and despite stable pressure controlled mode. The computational model reproduced this behavior only when parenchymal interdependence between neighboring acini was accounted for. Simulations closely mimicked the experimental magnitude of Fderecruited and Frecruited when mechanical interdependence was included, while its exclusion gave Frecruited values of zero at positive end-expiratory pressure greater than or equal to 3 cm H2O. CONCLUSIONS: These findings give further insight into the microscopic behavior of the injured lung and provide a means of testing protective-ventilation strategies to prevent recruitment/derecruitment and subsequent lung damage.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/fisiopatologia , Respiração com Pressão Positiva/efeitos adversos , Alvéolos Pulmonares/fisiopatologia , Lesão Pulmonar Aguda/diagnóstico por imagem , Animais , Simulação por Computador , Masculino , Pressão , Alvéolos Pulmonares/diagnóstico por imagem , Coelhos , Síncrotrons
17.
Artigo em Inglês | MEDLINE | ID: mdl-26904138

RESUMO

Managing acute respiratory distress syndrome (ARDS) invariably involves the administration of mechanical ventilation, the challenge being to avoid the iatrogenic sequellum known as ventilator-induced lung injury (VILI). Devising individualized ventilation strategies in ARDS requires that patient-specific lung physiology be taken into account, and this is greatly aided by the use of computational models of lung mechanical function that can be matched to physiological measurements made in a given patient. In this review, we discuss recent models that have the potential to serve as the basis for devising minimally injurious modes of mechanical ventilation in ARDS patients.

18.
Front Netw Physiol ; 4: 1392701, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757066

RESUMO

Introduction: Acute respiratory distress syndrome (ARDS) presents a significant clinical challenge, with ventilator-induced lung injury (VILI) being a critical complication arising from life-saving mechanical ventilation. Understanding the spatial and temporal dynamics of VILI can inform therapeutic strategies to mitigate lung damage and improve outcomes. Methods: Histological sections from initially healthy mice and pulmonary lavage-injured mice subjected to a second hit of VILI were segmented with Ilastik to define regions of lung injury. A scale-free network approach was applied to assess the correlation between injury regions, with regions of injury represented as 'nodes' in the network and 'edges' quantifying the degree of correlation between nodes. A simulated time series analysis was conducted to emulate the temporal sequence of injury events. Results: Automated segmentation identified different lung regions in good agreement with manual scoring, achieving a sensitivity of 78% and a specificity of 85% across 'injury' pixels. Overall accuracy across 'injury', 'air', and 'other' pixels was 81%. The size of injured regions followed a power-law distribution, suggesting a 'rich-get-richer' phenomenon in the distribution of lung injury. Network analysis revealed a scale-free distribution of injury correlations, highlighting hubs of injury that could serve as focal points for therapeutic intervention. Simulated time series analysis further supported the concept of secondary injury events following an initial insult, with patterns resembling those observed in seismological studies of aftershocks. Conclusion: The size distribution of injured regions underscores the spatially heterogeneous nature of acute and ventilator-induced lung injury. The application of network theory demonstrates the emergence of injury 'hubs' that are consistent with a 'rich-get-richer' dynamic. Simulated time series analysis demonstrates that the progression of injury events in the lung could follow spatiotemporal patterns similar to the progression of aftershocks in seismology, providing new insights into the mechanisms of injury distribution and propagation. Both phenomena suggest a potential for interventions targeting these injury 'hubs' to reduce the impact of VILI in ARDS management.

19.
Comput Biol Med ; 173: 108349, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547660

RESUMO

BACKGROUND: Ventilator dyssynchrony (VD) can worsen lung injury and is challenging to detect and quantify due to the complex variability in the dyssynchronous breaths. While machine learning (ML) approaches are useful for automating VD detection from the ventilator waveform data, scalable severity quantification and its association with pathogenesis and ventilator mechanics remain challenging. OBJECTIVE: We develop a systematic framework to quantify pathophysiological features observed in ventilator waveform signals such that they can be used to create feature-based severity stratification of VD breaths. METHODS: A mathematical model was developed to represent the pressure and volume waveforms of individual breaths in a feature-based parametric form. Model estimates of respiratory effort strength were used to assess the severity of flow-limited (FL)-VD breaths compared to normal breaths. A total of 93,007 breath waveforms from 13 patients were analyzed. RESULTS: A novel model-defined continuous severity marker was developed and used to estimate breath phenotypes of FL-VD breaths. The phenotypes had a predictive accuracy of over 97% with respect to the previously developed ML-VD identification algorithm. To understand the incidence of FL-VD breaths and their association with the patient state, these phenotypes were further successfully correlated with ventilator-measured parameters and electronic health records. CONCLUSION: This work provides a computational pipeline to identify and quantify the severity of FL-VD breaths and paves the way for a large-scale study of VD causes and effects. This approach has direct application to clinical practice and in meaningful knowledge extraction from the ventilator waveform data.


Assuntos
Lesão Pulmonar , Humanos , Ventiladores Mecânicos , Pulmão/fisiologia , Respiração Artificial/métodos
20.
Sci Rep ; 14(1): 8080, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582767

RESUMO

Pre-injured lungs are prone to injury progression in response to mechanical ventilation. Heterogeneous ventilation due to (micro)atelectases imparts injurious strains on open alveoli (known as volutrauma). Hence, recruitment of (micro)atelectases by positive end-expiratory pressure (PEEP) is necessary to interrupt this vicious circle of injury but needs to be balanced against acinar overdistension. In this study, the lung-protective potential of alveolar recruitment was investigated and balanced against overdistension in pre-injured lungs. Mice, treated with empty vector (AdCl) or adenoviral active TGF-ß1 (AdTGF-ß1) were subjected to lung mechanical measurements during descending PEEP ventilation from 12 to 0 cmH2O. At each PEEP level, recruitability tests consisting of two recruitment maneuvers followed by repetitive forced oscillation perturbations to determine tissue elastance (H) and damping (G) were performed. Finally, lungs were fixed by vascular perfusion at end-expiratory airway opening pressures (Pao) of 20, 10, 5 and 2 cmH2O after a recruitment maneuver, and processed for design-based stereology to quantify derecruitment and distension. H and G were significantly elevated in AdTGF-ß1 compared to AdCl across PEEP levels. H was minimized at PEEP = 5-8 cmH2O and increased at lower and higher PEEP in both groups. These findings correlated with increasing septal wall folding (= derecruitment) and reduced density of alveolar number and surface area (= distension), respectively. In AdTGF-ß1 exposed mice, 27% of alveoli remained derecruited at Pao = 20 cmH2O. A further decrease in Pao down to 2 cmH2O showed derecruitment of an additional 1.1 million alveoli (48%), which was linked with an increase in alveolar size heterogeneity at Pao = 2-5 cmH2O. In AdCl, decreased Pao resulted in septal folding with virtually no alveolar collapse. In essence, in healthy mice alveoli do not derecruit at low PEEP ventilation. The potential of alveolar recruitability in AdTGF-ß1 exposed mice is high. H is optimized at PEEP 5-8 cmH2O. Lower PEEP folds and larger PEEP stretches septa which results in higher H and is more pronounced in AdTGF-ß1 than in AdCl. The increased alveolar size heterogeneity at Pao = 5 cmH2O argues for the use of PEEP = 8 cmH2O for lung protective mechanical ventilation in this animal model.


Assuntos
Atelectasia Pulmonar , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Respiração com Pressão Positiva/métodos , Pulmão , Alvéolos Pulmonares/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA