Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 41(11): 2700-2707, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35899978

RESUMO

The (bio)availability of pharmaceuticals at solid/water interfaces is governed by their sorption, which determines their concentrations in groundwaters and surface waters in contact with biota, and can be affected by the presence of other contaminants such as metallic trace elements likely to compete for adsorption sites and form complexes with pharmaceuticals. We studied the adsorption of the pharmaceuticals propranolol and sotalol-two ß-blockers-on one soil and one sediment using batch experiments to assess their (bio)availability. The influence of contact time, pH, and concentration was studied. As in the real environment these contaminants are not alone but in mixtures, and they were studied alone, simultaneously added, and in the presence of Cu2+ , which is known to form coordination complexes with propranolol and sotalol, but their presence in mixtures did not alter their adsorption properties. Sotalol was more mobile in water and thus more bioavailable for organisms than propranolol. The mobility in surface waters of both ß-blockers and thus their bioavailabity for organisms is more important than their risk of transfer to groundwater during rainwater infiltration and to surface water due to runoff. Environ Toxicol Chem 2022;41:2700-2707. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Complexos de Coordenação , Oligoelementos , Poluentes Químicos da Água , Solo , Adsorção , Cobre/química , Oligoelementos/análise , Propranolol , Sotalol , Antagonistas Adrenérgicos beta , Poluentes Químicos da Água/química , Água/química , Preparações Farmacêuticas
2.
Sci Total Environ ; 639: 841-851, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29803054

RESUMO

The bioavailability of pharmaceuticals is governed by their sorption in soils/sediments, as the retention processes determine their concentration in surface- and ground-water. The adsorption of these contaminants can involve various solid components such as organic matter, clays and metallic oxides, and their distribution among these solid components depends on contaminant and solid properties. In this paper we studied the adsorption of the pharmaceutical propranolol - a beta-blocker - on eight different solids (six soils, one sediment and one kaolinite-based sample) by batch experiments. The influence of contact time, propranolol concentration and pH was considered, as well as the presence of copper(II). The investigated solids displayed a wide variability in terms of CEC (cationic exchange capacity) and organic carbon and carbonates contents. The influence of pH was negligible in the pH range from 5.5 to 8.6. The adsorbed amounts were greatly dependent on the solid and two groups of solids were evidenced: three soils of high CEC and organic carbon contents which retained high amounts of propranolol, and three soils, the sediment and the kaolinite-based sample (low CEC and organic carbon content) displaying a low adsorption capacity for the beta-blocker. A linear model enabling the determination of the sorption parameters Kd and Koc was pertinent to describe the adsorption isotherms but the Koc values showed a great variability. It was shown that organic carbon content alone could not explain propranolol adsorption. The CEC value was identified as influent parameter and a simple empirical model was proposed to describe propranolol adsorption. At microscopic and molecular scales, ToF-SIMS experiments indicated (i) a decrease of potassium on the surface upon propranolol adsorption with a distribution of the beta-blocker similarly to alumino-silicates, iron and organic carbon on the surface confirming a cation exchange mechanism and (ii) the absence of degradation products and copper-propranolol complexes.


Assuntos
Cobre/química , Modelos Químicos , Propranolol/análise , Poluentes do Solo/análise , Espectrometria de Massa de Íon Secundário/métodos , Adsorção , Concentração de Íons de Hidrogênio , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA