Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Environ Manage ; 350: 119068, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37821334

RESUMO

Deforestation in the Amazon has resulted in large areas of depleted soils on abandoned pastures and agricultural sites that present a restoration challenge central to protecting biodiversity and ecosystem function in the region. Biochar - charcoal made from waste materials - can improve soil physical, chemical, and biological properties, but the few tropical field trials to date do not give consistent results regarding tree growth. This study presents three years of soil performance and tree growth of a secondary forest shading nontimber forest product (NTFP) plantations of Ocotea quixos (Lauraceae), Myroxylon balsamum (Fabaceae), and their mixture. Open kiln and traditional mound biochars were added at 10 t ha-1 at two sites with contrasting soil types. Biochar additions resulted in pronounced effects on soil properties that varied over time and with depth in the soil profile. Biochar additions generally increased soil organic matter, electrical conductivity, and plant nutrients (in particular K, Ca, and N), but there were interactive effects of NTFP treatments, and stronger responses on the poorer soil type. Biochar amendments resulted in increased tree growth, with a 29 ± 12% increase in aboveground biomass (AGB) on plots amended with kiln biochar and a 23 ± 9% increase in plots with mound biochar compared to controls. Tree species also varied in growth responses to biochar additions, with the largest increases observed in Jaccaranda copaia and Piptocoma discolor. Significant interactions between biochar and NTFP treatments were also seen for tree growth responses, such as Cecropia spp., which only showed increased biomass on mound biochar plots planted with Ocotea quixos. Overall, our results demonstrate a stronger effect of biochar in less favorable soil conditions, and an overriding effect of the legume NTFP in richer soils, and suggest that additions of biochar and legumes are important options to increase productivity and ecological resilience in tropical forest restoration.


Assuntos
Fabaceae , Solo , Solo/química , Ecossistema , Carvão Vegetal/química , Equador , Florestas , Árvores , Verduras
2.
Ecol Appl ; 33(4): e2838, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36911981

RESUMO

Meta-analyses have become a valuable tool with which to synthesize effects across studies, but in ecology and evolution, they are often characterized by high heterogeneity, where effect sizes vary between studies. Much of this heterogeneity can be attributed to species-specific differences in responses to predictor variables. Here, we aimed to incorporate a novel trait-based approach to explain species-specific differences in a meta-analysis by testing the ability of morphological traits to explain why the effectiveness of flight-intercept trap design varies according to beetle species, a critical issue in forest pest management. An existing morphological trait database for forest beetles was supplemented, providing trait data for 97 species, while data from a previous meta-analysis on capture rates of bark or woodboring beetles according to different trap designs were updated. We combined these sources by including nine morphological traits as moderators in meta-analysis models, for five different components of trap design. Traits were selected based on theoretical hypotheses relating to beetle movement, maneuverability, and sensory perception. We compared the performance of morphological traits as moderators versus guild, taxonomic family, and null meta-analysis models. Morphological traits for the effect of trap type (panel vs. multiple-funnel) on beetle capture rates improved model fit (AICc ), reduced within-study variance (σ2 ), and explained more variation (McFadden's pseudo-R2 ) compared with null, guild, and taxonomic family models. For example, morphological trait models explained 10% more of the variance (pseudo-R2 ) when compared with a null model. However, using traits was less informative to explain how detailed elements of trap design such as surface treatment and color influence capture rates. The reduction of within-study variance when accounting for morphological traits demonstrates their potential value for explaining species-specific differences. Morphological traits associated with flight efficiency, maneuverability, and eye size were particularly informative for explaining the effectiveness of trap type. This could lead to improved predictability of optimal trap design according to species. Therefore, morphological traits could be a valuable tool for understanding species-specific differences in community ecology, but other causes of heterogeneity across studies, such as forest type and structure, require further investigation.


Assuntos
Besouros , Animais , Besouros/fisiologia , Florestas , Ecologia , Controle de Insetos
3.
Glob Chang Biol ; 23(3): 1065-1074, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27590777

RESUMO

Globally, biological invasions can have strong impacts on biodiversity as well as ecosystem functioning. While less conspicuous than introduced aboveground organisms, introduced belowground organisms may have similarly strong effects. Here, we synthesize for the first time the impacts of introduced earthworms on plant diversity and community composition in North American forests. We conducted a meta-analysis using a total of 645 observations to quantify mean effect sizes of associations between introduced earthworm communities and plant diversity, cover of plant functional groups, and cover of native and non-native plants. We found that plant diversity significantly declined with increasing richness of introduced earthworm ecological groups. While plant species richness or evenness did not change with earthworm invasion, our results indicate clear changes in plant community composition: cover of graminoids and non-native plant species significantly increased, and cover of native plant species (of all functional groups) tended to decrease, with increasing earthworm biomass. Overall, these findings support the hypothesis that introduced earthworms facilitate particular plant species adapted to the abiotic conditions of earthworm-invaded forests. Further, our study provides evidence that introduced earthworms are associated with declines in plant diversity in North American forests. Changing plant functional composition in these forests may have long-lasting effects on ecosystem functioning.


Assuntos
Biodiversidade , Florestas , Espécies Introduzidas , Oligoquetos , Plantas , Animais , Ecossistema , Estados Unidos
4.
PLoS One ; 19(4): e0302259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38669254

RESUMO

The box tree moth Cydalima perspectalis (Walker) (Lepidoptera: Crambidae) (BTM) is a native moth throughout eastern Asia, having recently become invasive in Europe (2007) where it feeds on boxwood (= box tree), Buxus spp. The moth rapidly spread across Europe and the Caucasus causing damage to both ornamental and wild Buxus. In 2018, C. perspectalis was found in Toronto, ON, Canada, and has since spread south into the US. To better predict where the moth will establish and have significant impact on ornamental trade in North America, we used most recent scientific literature and distribution points to update the temperature and diapause indices of an existing ecoclimatic CLIMEX model. The model parameters provided a good fit for the potential distribution of BTM compared to its known distribution across eastern Asia and in Europe. Interestingly, our results suggest that the current native distribution in Asia is incomplete and that further expansion is also possible in its introduced range, especially in northern Europe, along the Mediterranean coast of Africa, and eastward to central Russia. In North America, the model predicts that most of North America should be climatically suitable for the moth's establishment, with the exception of Alaska and the northern territories of Canada, as well as higher elevations in the Rocky Mountains and southern hot and dry areas. Our study highlights the importance of the CLIMEX model to assess the risk of BTM spreading in its newly invaded areas, especially North America, and its use to help make decisions in terms of regulatory dispersal restrictions and choice of management options.


Assuntos
Espécies Introduzidas , Mariposas , Animais , Mariposas/fisiologia , Europa (Continente) , América do Norte , Ásia , Modelos Biológicos , Distribuição Animal
5.
PLoS One ; 18(7): e0288291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37463169

RESUMO

Declining tree health status due to pollutant impacts and nutrient imbalance is widespread in urban forests; however, chemical fertilizer use is increasingly avoided to reduce eutrophication impacts. Biochar (pyrolyzed organic waste) has been advocated as an alternative soil amendment, but biochar alone generally reduces plant N availability. The combination of biochar and either organic forms of N or Plant Growth Promoting Microbes (PGPMs) as biofertilizers may address these challenges. We examined the effects of two wood biochar types with Bacillus velezensis and an inactivated yeast (IY) biofertilizer in a three-month factorial greenhouse experiment with Acer saccharinum L. (silver maple) saplings grown in a representative urban soil. All treatments combining biochars with biofertilizers significantly increased sapling growth, with up to a 91% increase in biomass relative to controls. Growth and physiological responses were closely related to nutrient uptake patterns, with nutrient vector analyses indicating that combined biochar and biofertilizer treatments effectively addressed nutrient limitations of both macronutrients (N, P, K, Mg, Ca), and micronutrients (B, Fe, Mn, Mo, Na, S, and Zn). Biochar-biofertilizer treatments also reduced foliar concentrations of Cu, suggesting potential to mitigate toxic metal impacts common in urban forestry. We conclude that selected combinations of biochar and biofertilizers have substantial promise to address common soil limitations to tree performance in urban settings.


Assuntos
Acer , Poluentes do Solo , Carvão Vegetal , Nutrientes , Solo , Árvores
6.
Oecologia ; 167(3): 701-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21618011

RESUMO

Mature forest canopies sustain an enormous diversity of herbivorous arthropods; however, with the exception of species that exhibit large-scale outbreaks, canopy arthropods are thought to have relatively little influence on overall forest productivity. Diminutive gall-inducing mites (Acari; Eriophyoidae) are ubiquitous in forest canopies and are almost always highly host specific, but despite their pervasive occurrence, the impacts of these obligate parasites on canopy physiology have not been examined. We have documented large declines in photosynthetic capacity (approx. 60%) and stomatal conductance (approx. 50%) in canopy leaves of mature sugar maple (Acer saccharum) trees frequently galled by the maple spindle gall mite Vasates aceriscrumena. Remarkably, such large impacts occurred at very low levels of galling, with the presence of only a few galls (occupying approx. 1% of leaf area) compromising gas-exchange across the entire leaf. In contrast to these extreme impacts on the leaves of adult trees, galls had no detectible effect on the gas-exchange of maple saplings, implying large ontogenetic differences in host tolerance to mite galling. We also found a significant negative correlation between canopy tree radial increment growth and levels of mite galling. Increased galling levels and higher physiological susceptibility in older canopy trees thus suggest that gall-inducing mites may be major drivers of "age-dependent" reductions in the physiological performance and growth of older trees.


Assuntos
Ácaros e Carrapatos/fisiologia , Acer/fisiologia , Fotossíntese , Acer/crescimento & desenvolvimento , Animais , Comportamento Alimentar/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia
7.
J Econ Entomol ; 114(5): 1867-1881, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33555017

RESUMO

The egg parasitoid Trichogramma spp. (Hymenoptera: Trichogrammatidae) is a widely used biocontrol agent against lepidopteran pests. Historically, Trichogramma were deployed either by plane or by using cardboard cards on which parasitized eggs are glued and manually installed at sites. Plane deployment is costly and card installation is time consuming, but the use of Trichogramma has been shown to be efficient against several pests. In 2016 and 2017, a research project investigated the potential use of unmanned aerial system for distributing Trichogramma as biocontrol agents against two major pests: an agricultural pest of maize, the European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), and a forest pest, the eastern spruce budworm, Choristoneura fumiferana (Clemens) (Lepidoptera: Tortricidae). Exposure duration of parasitized eggs to field conditions (temperature, predation, etc.) in maize fields influenced the Trichogramma's emergence rate, suggesting that timing of parasitoid releases with their emergence is essential. Although parasitism of naturally occurring eggs in maize fields could not be compared due to the low density of the European corn borer, parasitism of sentinel eggs by Trichogramma was more prominent in plots with unmanned aircraft systems (UAS)-releases compared to control plots. For spruce budworm, treatment with Trichogramma increased egg parasitism and there was no difference between the deployment by UAS and by Trichocards. We discuss these results in the context of pest biology and management. We also discuss the advantages and shortcomings of both methods and offer insights into where future work might go to further leverage the use of UAS in managing these important pests.


Assuntos
Himenópteros , Mariposas , Aeronaves , Animais , Canadá , Florestas , Controle Biológico de Vetores
8.
Environ Entomol ; 49(3): 580-585, 2020 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-32270200

RESUMO

Many insects exhibit a short-day diapause response, whereby diapause is induced when daylength falls below a critical threshold. This response is an adaptation to ensure synchrony between periods of insect activity, and the availability of resources, but it can cause problems when organisms are moved to new locations, where early or late-induced diapause can prove a barrier to establishment. We explored the role of photoperiod in diapause induction in Hypena opulenta, a recently introduced classical biological control agent for invasive swallow-worts in North America. We conducted four experimental cage releases as well as a growth chamber experiment to determine the threshold photoperiod for diapause induction in H. opulenta. We determined that the critical photoperiod for inducing diapause in 50% of H. opulenta is 15 h 35 min, which the moth only experiences in the Ottawa release site around summer solstice. This may lead to univoltinism, premature diapause, and poor establishment at some North American release sites. Our results can inform practical aspects of the biological control program for H. opulenta, such as fine-tuning methodologies for stockpiling diapausing pupae in the laboratory and narrowing down the optimal time window for releases at a given location. Additionally, our results will be important for the development of a temperature-based phenology model to more accurately predict voltinism in H. opulenta across the invasive range of swallow-worts in North America.


Assuntos
Diapausa de Inseto , Diapausa , Mariposas , Animais , América do Norte , Fotoperíodo , Temperatura
9.
PLoS One ; 13(2): e0193254, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474503

RESUMO

Human exposure to green space and vegetation is widely recognized to result in physical and mental health benefits; however, to date, the specific effects of tree cover, diversity, and species composition on student academic performance have not been investigated. We compiled standardized performance scores in Grades 3 and 6 for the collective student body in 387 schools across the Toronto District School Board (TDSB), and examined variation in relation to tree cover, tree diversity, and tree species composition based on comprehensive inventories of trees on school properties combined with aerial-photo-based assessments of tree cover. Analyses accounted for variation due to socioeconomic factors using the learning opportunity index (LOI), a regional composite index of external challenges to learning that incorporates income and other factors, such as students with English as a second language. As expected, LOI had the greatest influence on student academic performance; however, the proportion of tree cover, as distinct from other types of "green space" such as grass, was found to be a significant positive predictor of student performance, accounting for 13% of the variance explained in a statistical model predicting mean student performance assessments. The effects of tree cover and species composition were most pronounced in schools that showed the highest level of external challenges, suggesting the importance of urban forestry investments in these schools.


Assuntos
Desempenho Acadêmico , Modelos Teóricos , Árvores , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Ontário
10.
J Insect Physiol ; 98: 38-46, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27871976

RESUMO

The temperature-dependent development and survival of immatures, as well as adult longevity and potential fecundity of the endoparasitoid Tranosema rostrale (Hymenoptera: Ichneumonidae) parasitizing spruce budworm Choristoneura fumiferana (Lepidoptera: Tortricidae) larvae was investigated under laboratory conditions at several constant temperatures ranging from 5 to 30°C. Maximum likelihood modeling approaches were used to estimate thermal responses in development, survival, and longevity. A model describing the effect of temperature on potential fecundity of the parasitoid was also developed taking oogenesis and oosorption into account. In-host and pupal development rates of the parasitoid increased with temperature up to 25°C, and decreased thereafter. Immature survival was highest below 20°C, and rapidly decreased at higher temperatures. Adult longevity decreased exponentially with increasing temperature for both males and females. Highest potential fecundity was reached at 10°C. Considering survival and potential fecundity, the parasitoid seems best adapted to cool temperatures below 20°C. Simulations of the life-history traits under variable temperature regimes indicate that temperature fluctuations decrease survival and increase realised fecundity compared to constant temperatures. The temperature-dependent fecundity model developed can be applied to other non-host-feeding synovigenic parasitoids. The equations and parameter estimates provided in this paper can be used to build comprehensive models predicting the seasonal phenology of this parasitoid and spruce budworm parasitism under changing climatic conditions.


Assuntos
Mariposas/parasitologia , Vespas/fisiologia , Animais , Feminino , Fertilidade , Larva/crescimento & desenvolvimento , Larva/parasitologia , Larva/fisiologia , Longevidade , Masculino , Reprodução , Temperatura , Vespas/crescimento & desenvolvimento
11.
J Insect Physiol ; 98: 126-133, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28041943

RESUMO

Endoparasitoids face the challenge of overcoming the immune reaction of their hosts, which typically consists of encapsulation and melanisation of parasitoid eggs or larvae. Some endoparasitic wasps such as the solitary Tranosema rostrale (Hymenoptera: Ichneumonidae) that lay their eggs in larvae of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), have evolved a symbiotic relationship with a polydnavirus (PDV), which in turn helps them suppress the host's immune response. We observed an increase in mortality of immature T. rostrale with increasing temperature, and we tested two hypotheses about the mechanisms involved: high temperatures (1) hamper the expression of T. rostrale PDV genes and (2) enhance the expression of spruce budworm immunity-related genes. Dissections of parasitized spruce budworm larvae reared at 30°C revealed that most parasitoid eggs or larvae had died as a result of encapsulation and melanisation by the host. A qPCR analysis of T. rostrale PDV (TrIV) gene expression showed that the transcription of several TrIV genes in host larvae was downregulated at high temperature. On the other hand, encapsulation, but not melanisation, of foreign bodies in spruce budworm larvae was enhanced at high temperatures, as shown by the injection of Sephadex™ beads into larvae. However, at the molecular level, the transcription of genes related to spruce budworm's melanisation process (prophenoloxidase 1 and 2) was upregulated. Our results support the hypothesis that a temperature-dependent increase of encapsulation response is due to the combined effects of reduced expression of TrIV genes and enhanced expression of host immune genes.


Assuntos
Mariposas/parasitologia , Mariposas/virologia , Polydnaviridae/genética , Transcrição Gênica , Proteínas Virais/genética , Vespas/fisiologia , Animais , Interações Hospedeiro-Parasita , Temperatura Alta , Imunidade Inata , Larva/crescimento & desenvolvimento , Larva/parasitologia , Larva/fisiologia , Larva/virologia , Mariposas/crescimento & desenvolvimento , Polydnaviridae/metabolismo , Proteínas Virais/metabolismo , Vespas/crescimento & desenvolvimento
12.
Environ Entomol ; 45(5): 1123-1130, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27417878

RESUMO

The seasonal pattern of parasitism by a parasitoid can be influenced by many factors, such as interspecific competition and host instar preference. We conducted field and laboratory experiments to describe the seasonal pattern of parasitism of spruce budworm Choristoneura fumiferana (Clemens) larvae by Tranosema rostrale (Brischke), and to investigate whether this pattern can be explained by interaction with other parasitoid species, or by host instar preference. Larval survival, developmental time, sex ratio, and adult size of T. rostrale developing in different host instars were also measured to further assess the potential importance of host instar on parasitoid life history. Parasitism by T. rostrale increased over the season, reaching the highest rate during the fourth-instar larva, and then decreased again until the sixth-instar. At the same time, parasitism by another parasitoid, Elachertus cacoeciae (Howard), increased over the season, and multiparasitism with T. rostrale suggests potential competition between these two parasitoids. Tranosema rostrale showed no host instar preference when third- to sixth-instar larvae were exposed simultaneously in a manipulative field experiment. The proportion of females emerging from spruce budworm larvae increased over the season; however, no difference in sex ratio was observed in the manipulative field experiment. Only male pupal development time and adult size were marginally increased in fifth-instar spruce budworm larvae. We conclude that T. rostrale's seasonal phenology or competition with E. cacoeciae, but not host instar preference, were possibly responsible for the observed seasonal pattern of parasitism.


Assuntos
Mariposas/parasitologia , Vespas/fisiologia , Animais , Larva/crescimento & desenvolvimento , Larva/parasitologia , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Quebeque , Estações do Ano , Vespas/crescimento & desenvolvimento
13.
PLoS One ; 11(3): e0152264, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27011315

RESUMO

Nutritional enhancement of crops using genetic engineering can potentially affect herbivorous pests. Recently, oilseed crops have been genetically engineered to produce the long-chain omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) at levels similar to that found in fish oil; to provide a more sustainable source of these compounds than is currently available from wild fish capture. We examined some of the growth and development impacts of adding EPA and DHA to an artificial diet of Pieris rapae, a common pest of Brassicaceae plants. We replaced 1% canola oil with EPA: DHA (11:7 ratio) in larval diets, and examined morphological traits and growth of larvae and ensuing adults across 5 dietary treatments. Diets containing increasing amounts of EPA and DHA did not affect developmental phenology, larval or pupal weight, food consumption, nor larval mortality. However, the addition of EPA and DHA in larval diets resulted in progressively heavier adults (F 4, 108 = 6.78; p = 0.011), with smaller wings (p < 0.05) and a higher frequency of wing deformities (R = 0.988; p = 0.001). We conclude that the presence of EPA and DHA in diets of larval P. rapae may alter adult mass and wing morphology; therefore, further research on the environmental impacts of EPA and DHA production on terrestrial biota is advisable.


Assuntos
Brassicaceae/metabolismo , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Graxos Ômega-3/farmacologia , Animais , Brassicaceae/genética , Brassicaceae/parasitologia , Borboletas/efeitos dos fármacos , Borboletas/crescimento & desenvolvimento , Dieta , Ácidos Docosa-Hexaenoicos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Engenharia Genética , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Asas de Animais/efeitos dos fármacos
14.
Nat Genet ; 45(2): 220-5, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23313953

RESUMO

How an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants, but the genetic and molecular bases for adaptation to plant defense compounds remain poorly understood. We report the first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, which contains 18,071 protein-coding and 1,412 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds. A recent expansion of retrotransposons near detoxification-related genes and a wider system used in the metabolism of plant defense compounds are shown to also be involved in the development of insecticide resistance. This work shows the genetic and molecular bases for the evolutionary success of this worldwide herbivore and offers wider insights into insect adaptation to plant feeding, as well as opening avenues for more sustainable pest management.


Assuntos
Adaptação Biológica/genética , Variação Genética , Genoma/genética , Glucosinolatos/metabolismo , Herbivoria/genética , Heterozigoto , Mariposas/genética , Filogenia , Animais , Sequência de Bases , China , Cromossomos Artificiais Bacterianos , Biologia Computacional , Evolução Molecular , Etiquetas de Sequências Expressas , Feminino , Perfilação da Expressão Gênica , Masculino , Anotação de Sequência Molecular , Dados de Sequência Molecular , Mariposas/metabolismo , Mutação/genética , Controle de Pragas/métodos , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Sulfatases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA