Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 27(68): 17094-17103, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34590748

RESUMO

Polyoxothiometalate ions (ThioPOM) are active hydrogen-evolution reaction (HER) catalysts based on modular assembly built from electrophilic clusters {MoSx } and vacant polyoxotungstates. Herein, the dumbbell-like anion [{(PW11 O39 )Mo3 S4 (H2 O)3 (OH)}2 ]8- exhibits very high light-driven HER activity, while the active cores {Mo3 S4 } do not contain any exposed disulfido ligands, which were suspected to be the origin of the HER activity. Moreover, in the catalyst architecture, the two central {Mo3 S4 } cores are sandwiched by two {PW11 O39 }7- subunits that act as oxidant-resistant protecting groups and behave as electron-collecting units. A detailed photophysical study was carried out confirming the reductive quenching mechanism of the photosensitizer [Ir(ppy)2 (dtbbpy)]+ by the sacrificial donor triethanolamine (TEOA) and highlighting the very high rate constant of the electron transfer from the reduced photosensitizer to the ThioPOM catalyst. Such results provide new insights into the field of molecular catalytic systems able to promote high HER activity.

2.
Chemphyschem ; 21(24): 2680-2691, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-32991037

RESUMO

In this work, we investigated for the first time morin in MeOH at different pH values by picosecond time-resolved fluorescence. We identified the two species responsible for the fluorescence at low and high pH. The solvated morin-solvent hydrogen-bonded complex has been experimentally observed for the first time. We give also the typical fluorescence spectra as well as the fluorescence lifetimes of the probable emitting species. In this work we put forward new insights concerning the contribution of free morin to the fluorescence. We hope that these new data improve the accuracy of the interpretation of the cation:morin complexes titration using fluorescence signal.


Assuntos
Flavonoides/química , Fluorescência , Concentração de Íons de Hidrogênio , Metanol/química , Estrutura Molecular , Espectrometria de Fluorescência , Fatores de Tempo
3.
Phys Chem Chem Phys ; 20(34): 21890-21902, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30113612

RESUMO

The changes of the local structure in the binary mixture of 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6) ionic liquid and acetonitrile are investigated over the entire composition range. Two charge distribution models of the ions are considered: in the first one, the atomic fractional charges of the cations and anions are kept equal with those in the neat ionic liquid, and hence they are independent from the mole fraction of the ionic liquid, while in the second one the charge distribution is scaled up by a mole fraction dependent factor. The sum of these charges converge to +1e and -1e on the cation and anion, respectively, at infinite dilution. All the other interactions and geometry parameters of the ions (i.e., Lennard-Jones, bond stretching, angle bending and dihedral parameters) are identical in the two cases. The effect of the fractional charge distribution on the hydrogen bonding between the counterions themselves and between the ions and solvent molecules, as well as on the stacking interactions between the cations, is analyzed. To this end, two distances, characteristic of the hydrogen bond formed by the donor moiety and its nearest neighbor acceptor, as well as a coordinate system that defines unambiguously the orientation between a reference cation and its nearest neighbor, are introduced. It is shown that, with the variable charge model, the neighboring cation-anion pairs maintain their relative arrangement similar to the neat ionic liquid down to an ionic liquid mole fraction of xIL = 0.10, whereas in the case of the constant charge model such changes occur already at xIL = 0.20. Furthermore, the analysis of the first and the second nearest neighbor distance distributions of an anion around a reference cation indicates that, at this mole fraction range, there are two different preferred arrangements of the anions around the cations. In the first one, similarly to the local structure around a reference cation in the neat ionic liquid, the anion forms a distorted hydrogen bond with the cation, while in the second one the anion is located farther from the cation, forming no hydrogen bond with it. The relative population of these two types of preferred nearest neighbor cation-anion arrangements is found to be sensitive to further decrease of the ionic liquid mole fraction. These findings correlate with experimental results concerning the behavior of many physical chemical properties (e.g., excess volume, excess viscosity, chemical shift, infrared and Raman vibrational mode shifts, diffusion, etc.) that were found to undergo a drastic change in this mole fraction range. Our results show that in this composition range a transition occurs from the situation where the macroscopic physical chemical properties of the system are determined primarily by the cation-anion hydrogen bonding interactions to that where they are determined by the solvation of the cation and the anion by the molecular solvent.

4.
J Phys Chem B ; 128(18): 4485-4503, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38687688

RESUMO

We conducted a study on the photophysics of three indoline dyes, D102, D149, and D205, in binary mixtures of ionic liquids (IL) and polar aprotic molecular solvents (MS). Specifically, we examined the behavior of these dyes in IL-MS mixtures containing four different imidazolium-based ILs and three different polar aprotic MSs. Our investigation involved several techniques, including stationary absorption and emission measurements, as well as femtosecond transient absorption (TA) spectroscopy. Through our analysis, we discovered a peculiar behavior of several photophysical properties at low IL mole fractions (0 < XIL < 0.2). Indeed, in this range of mixture composition, the absorption maximum wavelength decreases noticeably, while the emission maximum wavelength and the Stokes shift, expressed in wavenumbers, reach a maximum. while a minimum occurs in the relative quantum yield and the excited state lifetime. These results indicate that the solvation of dye undergoes a large change in this range of mixture composition. We found that, at high ionic liquid content, the excited relaxation times are correlated with the high viscosity, while at low content, it is the polarity of the solvent that influences the behavior of the excited relaxation times. At a mixture composition of around 0.10, the behavior of the photophysical properties of the studied IL-MS mixtures indicates a crossover between situations where the solvation is dominated by that of ions and that dominated by the solvent.

5.
Chem Commun (Camb) ; 59(73): 10988-10991, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37615655

RESUMO

Evidence for photoinduced intermolecular electron transfer from the excited state of the [Mo6I8Cl6]2- electron-rich cluster to polyoxometalates (POMs) is reported. We demonstrate that the global charge density of POMs affects the efficiency of electron transfer. This work paves the way for the rational design of photocatalytic systems using cluster-based complexes as robust noble-metal-free photosensitizers.

6.
J Phys Chem B ; 123(28): 6065-6075, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31179700

RESUMO

The aim of this paper is to quantify the changes of the interionic and ion-solvent interactions in mixtures of imidazolium-based ionic liquids, having tetrafluoroborate (BmimBF4), hexafluorophosphate (BmimPF6), trifluoromethylsulfonate (BmimTFO), or bis(trifluoromethanesulfonyl)imide (BmimTFSI), anions, and polar aprotic molecular solvents, such as acetonitrile (AN), γ-butyrolactone (GBL), and propylene carbonate (PC). For this purpose, we calculate, using the nearest-neighbor approach, the average distance between the imidazolium ring H atom in positions 2, 4, and 5 (H2,4,5) and the nearest high-electronegativity atom of the solvent or anion (X) as distance descriptors, and the mean angle formed by the C2,4,5-H2,4,5 bond and the H2,4,5···X axis around the H2,4,5 atom as angular descriptors of the cation-anion and cation-solvent interactions around the ring C-H groups. The behavior of these descriptors as a function of the ionic liquid mole fraction is analyzed in detail. The obtained results show that the extent of the change of these descriptors with respect to their values in the neat ionic liquid depends both on the nature of the anion and on the mixture composition. Thus, in the case of the mixtures of the molecular solvents with BmimBF4 and BmimTFO, a small change of the distance and a drastic increase of the angular descriptor corresponding to the cation-anion interactions are observed with decreasing mole fraction of the ionic liquid, indicating that the anion moves from the above/below position (with respect to the imidazolium ring plane) to a position that is nearly linearly aligned with the C2-H2 bond and hinders the possible interaction between the C2-H2 group and the solvent molecules. On the other hand, in the case of mixtures of BmimTFSI and BmimPF6 with the molecular solvents, both the observed increase of the distance descriptor and the slight change of the angular descriptor with decreasing ionic liquid mole fraction are compatible with the direct interactions of the solvent with the C2-H2 group. The behavior of these descriptors is correlated with the experimentally observed 1H chemical shift of the C2-H2 group and the red shift of the C2-H2 vibrational mode, particularly at low ionic liquid mole fractions. The present results are thus of great help in interpreting these experimental observations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA