Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
J Immunol ; 211(12): 1806-1813, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37870292

RESUMO

Platelets are key contributors to allergic asthma and aspirin-exacerbated respiratory disease (AERD), an asthma phenotype involving platelet activation and IL-33-dependent mast cell activation. Human platelets express the glucagon-like peptide-1 receptor (GLP-1R). GLP-1R agonists decrease lung IL-33 release and airway hyperresponsiveness in mouse asthma models. We hypothesized that GLP-1R agonists reduce platelet activation and downstream platelet-mediated airway inflammation in AERD. GLP-1R expression on murine platelets was assessed using flow cytometry. We tested the effect of the GLP-1R agonist liraglutide on lysine-aspirin (Lys-ASA)-induced changes in airway resistance, and platelet-derived mediator release in a murine AERD model. We conducted a prospective cohort study comparing the effect of pretreatment with liraglutide or vehicle on thromboxane receptor agonist-induced in vitro activation of platelets from patients with AERD and nonasthmatic controls. GLP-1R expression was higher on murine platelets than on leukocytes. A single dose of liraglutide inhibited Lys-ASA-induced increases in airway resistance and decreased markers of platelet activation and recruitment to the lung in AERD-like mice. Liraglutide attenuated thromboxane receptor agonist-induced activation as measured by CXCL7 release in plasma from patients with AERD and CD62P expression in platelets from both patients with AERD (n = 31) and nonasthmatic, healthy controls (n = 11). Liraglutide, a Food and Drug Administration-approved GLP-1R agonist for treatment of type 2 diabetes and obesity, attenuates in vivo platelet activation in an AERD murine model and in vitro activation in human platelets in patients with and without AERD. These data advance the GLP-1R axis as a new target for platelet-mediated inflammation warranting further study in asthma.


Assuntos
Asma Induzida por Aspirina , Asma , Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico , Interleucina-33 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estudos Prospectivos , Ativação Plaquetária , Aspirina/farmacologia , Inflamação , Receptores de Tromboxanos/uso terapêutico
2.
Mol Ecol ; 32(13): 3356-3367, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35771845

RESUMO

Recent declines in once-common species are triggering concern that an environmental crisis point has been reached. Yet, the lack of long abundance time series data for most species can make it difficult to attribute these changes to anthropogenic causes, and to separate them from normal cycles. Genetic diversity, on the other hand, is sensitive to past and recent environmental changes, and reflects a measure of a populations' potential to adapt to future stressors. Here, we consider whether patterns of genetic diversity among aquatic insects can be linked to historical and recent patterns of land use change. We collated mitochondrial cytochrome c oxidase subunit I (COI) variation for >700 aquatic insect species across the United States, where patterns of agricultural expansion and intensification have been documented since the 1800s. We found that genetic diversity was lowest in regions where cropland was historically (pre-1950) most extensive, suggesting a legacy of past environmental harm. Genetic diversity further declined where cropland has since expanded, even after accounting for climate and sampling effects. Notably though, genetic diversity also appeared to rebound where cropland has diminished. Our study suggests that genetic diversity at the community level can be a powerful tool to infer potential population declines and rebounds over longer time spans than is typically possible with ecological data. For the aquatic insects that we considered, patterns of land use many decades ago appear to have left long-lasting damage to genetic diversity that could threaten evolutionary responses to rapid global change.


Assuntos
Agricultura , Insetos , Animais , Insetos/genética , Fazendas , Evolução Biológica , Mudança Climática , Variação Genética/genética , Biodiversidade , Ecossistema
3.
J Anim Ecol ; 92(11): 2175-2188, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37732627

RESUMO

Diet composition modulates animals' ability to resist parasites and recover from stress. Broader diet breadths enable omnivores to mount dynamic responses to parasite attack, but little is known about how plant/prey mixing might influence responses to infection. Using omnivorous deer mice (Peromyscus maniculatus) as a model, we examine how varying plant and prey concentrations in blended diets influence resistance and body condition following infestation by Rocky Mountain wood ticks (Dermacentor andersoni). In two repeated experiments, deer mice fed for 4 weeks on controlled diets that varied in proportions of seeds and insects were then challenged with 50 tick larvae in two sequential infestations. The numbers of ticks successfully feeding on mice declined by 25% and 66% after the first infestation (in the first and second experiments, respectively), reflecting a pattern of acquired resistance, and resistance was strongest when plant/prey ratios were more equally balanced in mouse diets, relative to seed-dominated diets. Diet also dramatically impacted the capacity of mice to cope with tick infestations. Mice fed insect-rich diets lost 15% of their body weight when parasitized by ticks, while mice fed seed-rich diets lost no weight at all. While mounting/maintaining an immune response may be energetically demanding, mice may compensate for parasitism with fat and carbohydrate-rich diets. Altogether, these results suggest that a diverse nutritional landscape may be key in enabling omnivores' resistance and resilience to infection and immune stressors in their environments.


Assuntos
Parasitos , Doenças dos Roedores , Infestações por Carrapato , Animais , Peromyscus , Larva/fisiologia , Infestações por Carrapato/parasitologia , Infestações por Carrapato/veterinária , Dieta/veterinária
4.
J Math Biol ; 87(5): 75, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878119

RESUMO

In many situations, it would be useful to know not just the best phylogenetic tree for a given data set, but the collection of high-quality trees. This goal is typically addressed using Bayesian techniques, however, current Bayesian methods do not scale to large data sets. Furthermore, for large data sets with relatively low signal one cannot even store every good tree individually, especially when the trees are required to be bifurcating. In this paper, we develop a novel object called the "history subpartition directed acyclic graph" (or "history sDAG" for short) that compactly represents an ensemble of trees with labels (e.g. ancestral sequences) mapped onto the internal nodes. The history sDAG can be built efficiently and can also be efficiently trimmed to only represent maximally parsimonious trees. We show that the history sDAG allows us to find many additional equally parsimonious trees, extending combinatorially beyond the ensemble used to construct it. We argue that this object could be useful as the "skeleton" of a more complete uncertainty quantification.


Assuntos
Evolução Biológica , Compostos Radiofarmacêuticos , Filogenia , Teorema de Bayes , Incerteza
5.
Glob Chang Biol ; 28(15): 4726-4735, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35686571

RESUMO

Many insects are in clear decline, with monarch butterflies (Danaus plexippus) drawing particular attention as a flagship species. It is well documented that, among migratory populations, numbers of overwintering monarchs have been falling across several decades, but trends among breeding monarchs are less clear. Here, we compile >135,000 monarch observations between 1993 and 2018 from the North American Butterfly Association's annual butterfly count to examine spatiotemporal patterns and potential drivers of adult monarch relative abundance trends across the entire breeding range in eastern and western North America. While the data revealed declines at some sites, particularly the US Northeast and parts of the Midwest, numbers in other areas, notably the US Southeast and Northwest, were unchanged or increasing, yielding a slightly positive overall trend across the species range. Negative impacts of agricultural glyphosate use appeared to be counterbalanced by positive effects of annual temperature, particularly in the US Midwest. Overall, our results suggest that population growth in summer is compensating for losses during the winter and that changing environmental variables have offsetting effects on mortality and/or reproduction. We suggest that density-dependent reproductive compensation when lower numbers arrive each spring is currently able to maintain relatively stable breeding monarch numbers. However, we caution against complacency since accelerating climate change may bring growing threats. In addition, increases of summer monarchs in some regions, especially in California and in the south, may reflect replacement of migratory with resident populations. Nonetheless, it is perhaps reassuring that ubiquitous downward trends in summer monarch abundance are not evident.


Assuntos
Borboletas , Migração Animal , Animais , América do Norte , Dinâmica Populacional , Estações do Ano
6.
Pediatr Res ; 91(1): 92-100, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465878

RESUMO

BACKGROUND: Neonatal hypoxic-ischemic brain injury (HIBI) results in significant morbidity and mortality despite current standard therapies. MicroRNAs (miRNAs) are a promising therapeutic target; however, there is a paucity of data on endogenous miRNA expression of the brain after HIBI during the primary therapeutic window (6-72 h after injury). METHODS: Postnatal day 9 mouse pups underwent unilateral carotid ligation+hypoxia (HIBI), sham surgery+hypoxia, or sham surgery+normoxia (controls). miRNA sequencing was performed on the ipsilateral brain of each of the three groups plus the contralateral HIBI brain at 24 and 72 h after injury. Findings were validated in eight key miRNAs by quantitative polymerase chain reaction. RESULTS: Hypoxia resulted in significant differential expression of 38 miRNAs at both time points. Mir-2137, -335, -137, and -376c were significantly altered by neonatal HIBI at 24 and 72 h, with 3 of the 4 demonstrating multiphasic expression (different direction of differential expression at 24 versus 72 h). CONCLUSIONS: Our global assessment of subacute changes in brain miRNA expression after hypoxia or HIBI will advance research into targeted miRNA-based interventions. It will be important to consider the multiphasic miRNA expression patterns after HIBI to identify optimal timing for individual interventions. IMPACT: This study is the first to comprehensively define endogenous brain microRNA expression changes outside of the first hours after neonatal hypoxic-ischemic brain injury (HIBI). Mir-2137, -335, -137, and -376c were significantly altered by neonatal HIBI and therefore deserve further investigation as possible therapeutic targets. The expression profiles described will support the design of future studies attempting to develop miRNA-based interventions for infants with HIBI. At 24 h after injury, contralateral HIBI miRNA expression patterns were more similar to ipsilateral HIBI than to controls, suggesting that the contralateral brain is not an appropriate "internal control" for miRNA studies in this model.


Assuntos
Animais Recém-Nascidos , Encéfalo/metabolismo , Hipóxia-Isquemia Encefálica/genética , MicroRNAs/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Análise de Sequência de RNA/métodos
7.
Ecol Appl ; 32(5): e2593, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35340072

RESUMO

Global temperatures are generally increasing, and this is leading to a well documented advancement and extension of seasonal activity of many pest insects. Effects of changing precipitation have received less attention, but might be complex because rain and snow are increasing in some places but decreasing in others. This raises the possibility that altered precipitation could accentuate, or even reverse, the effects of rising temperatures on pest outbreaks. We used >592 K aphid suction-trap captures over 15 years, in the heavily farmed central USA, to examine how the activity of Aphis glycines (soybean aphid), Rhopalosiphum maidis (corn aphid), and Rhopalosiphum padi (bird cherry-oat aphid) changed with variation in both temperature and precipitation. Increasing precipitation caused late-season flight activity of A. glycines and early-season activity of R. padi to shift earlier, while increasing temperature did the same for early-season activity of A. glycines and R. maidis. In these cases, precipitation and temperature exhibited directionally similar, but independent, effects. However, precipitation sometimes mediated temperature effects in complex ways. At relatively low temperatures, greater precipitation generally caused late-season flights of R. maidis to occur earlier. However, this pattern was reversed at higher temperatures with precipitation delaying late-season activity. In contrast, greater precipitation delayed peak flights of R. padi at lower temperatures, but caused them to occur earlier at higher temperatures. So, in these two cases the interactive effects of precipitation on temperature were mirror images of one another. When projecting future aphid flight phenology, models that excluded precipitation covariates consistently underpredicted the degree of phenological advance for A. glycines and R. padi, and underpredicted the degree of phenological delay for R. maidis under expected future climates. Overall, we found broad evidence that changing patterns of aphid flight phenology could only be understood by considering both temperature and precipitation changes. In our study region, temperature and precipitation are expected to increase in tandem, but these correlations will be reversed elsewhere. This reinforces the need to include both main and interactive effects of precipitation and temperature when seeking to accurately predict how pest pressure will change with a changing climate.


Assuntos
Afídeos , Fabaceae , Animais , Clima , Estações do Ano , Temperatura
8.
Ecol Appl ; 32(2): e2523, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34921463

RESUMO

Recent foodborne illness outbreaks have heightened pressures on growers to deter wildlife from farms, jeopardizing conservation efforts. However, it remains unclear which species, particularly birds, pose the greatest risk to food safety. Using >11,000 pathogen tests and 1565 bird surveys covering 139 bird species from across the western United States, we examined the importance of 11 traits in mediating wild bird risk to food safety. We tested whether traits associated with pathogen exposure (e.g., habitat associations, movement, and foraging strategy) and pace-of-life (clutch size and generation length) mediated foodborne pathogen prevalence and proclivities to enter farm fields and defecate on crops. Campylobacter spp. were the most prevalent enteric pathogen (8.0%), while Salmonella and Shiga-toxin producing Escherichia coli (STEC) were rare (0.46% and 0.22% prevalence, respectively). We found that several traits related to pathogen exposure predicted pathogen prevalence. Specifically, Campylobacter and STEC-associated virulence genes were more often detected in species associated with cattle feedlots and bird feeders, respectively. Campylobacter was also more prevalent in species that consumed plants and had longer generation lengths. We found that species associated with feedlots were more likely to enter fields and defecate on crops. Our results indicated that canopy-foraging insectivores were less likely to deposit foodborne pathogens on crops, suggesting growers may be able to promote pest-eating birds and birds of conservation concern (e.g., via nest boxes) without necessarily compromising food safety. As such, promoting insectivorous birds may represent a win-win-win for bird conservation, crop production, and food safety. Collectively, our results suggest that separating crop production from livestock farming may be the best way to lower food safety risks from birds. More broadly, our trait-based framework suggests a path forward for co-managing wildlife conservation and food safety risks in farmlands by providing a strategy for holistically evaluating the food safety risks of wild animals, including under-studied species.


Assuntos
Animais Selvagens , Escherichia coli Shiga Toxigênica , Animais , Aves , Bovinos , Fazendas , Salmonella , Estados Unidos
9.
Hum Brain Mapp ; 42(14): 4740-4749, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34312945

RESUMO

The insular cortex and anterior cingulate cortex together comprise the salience or midcingulo-insular network, involved in detecting salient events and initiating control signals to mediate brain network dynamics. The extent to which functional coupling between the salience network and the rest of the brain undergoes changes due to development and aging is at present largely unexplored. Here, we examine dynamic functional connectivity (dFC) of the salience network in a large life span sample (n = 601; 6-85 years old). A sliding-window analysis and k-means clustering revealed five states of dFC formed with the salience network, characterized by either widespread asynchrony or different patterns of synchrony between the salience network and other brain regions. We determined the frequency, dwell time, total transitions, and specific state-to-state transitions for each state and subject, regressing the metrics with subjects' age to identify life span trends. A dynamic state characterized by low connectivity between the salience network and the rest of the brain had a strong positive quadratic relationship between age and both frequency and dwell time. Additional frequency, dwell time, total transitions, and state-to-state transition trends were observed with other salience network states. Our results highlight the metastable dynamics of the salience network and its role in the maturation of brain regions critical for cognition.


Assuntos
Envelhecimento/fisiologia , Conectoma , Giro do Cíngulo/fisiologia , Desenvolvimento Humano/fisiologia , Córtex Insular/fisiologia , Rede Nervosa/fisiologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Atenção/fisiologia , Criança , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Córtex Insular/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
10.
Glob Chang Biol ; 27(18): 4283-4293, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34216186

RESUMO

Many animals change feeding habits as they progress through life stages, exploiting resources that vary in space and time. However, complex life histories may bring new risks if rapid environmental change disrupts the timing of these switches. Here, we use abundance times series for a diverse group of herbivorous insects, aphids, to search for trait and environmental characteristics associated with declines. Our meta dataset spanned three world regions and >300 aphid species, tracked at 75 individual sites for 10-50 years. Abundances were generally falling, with median changes of -8.3%, -5.6%, and -0.1% per year in the central USA, northwestern USA, and United Kingdom, respectively. Aphids that obligately alternated between host plants annually and those that were agricultural pests exhibited the steepest declines, relative to species able to persist on the same host plant year-round or those in natural areas. This suggests that host alternation might expose aphids to climate-induced phenology mismatches with one or more of their host plant species, with additional risks from exposure to insecticides and other management efforts. Warming temperatures through time were associated with milder aphid declines or even abundance increases, particularly at higher latitudes. Altogether, while a warming world appeared to benefit some aphid species in some places, most aphid species that had time-sensitive movements among multiple host plants seemed to face greater risk of decline. More generally, this suggests that recent human-induced rapid environmental change is rebalancing the risks and rewards associated with complex life histories.


Assuntos
Afídeos , Animais , Clima , Mudança Climática , Herbivoria , Humanos , Plantas
11.
Glob Chang Biol ; 27(12): 2702-2714, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33749964

RESUMO

Some insect populations are experiencing dramatic declines, endangering the crucial ecosystem services they provide. Yet, other populations appear robust, highlighting the need to better define patterns and underlying drivers of recent change in insect numbers. We examined abundance and biodiversity trends for North American butterflies using a unique citizen-science dataset that has recorded observations of over 8 million butterflies across 456 species, 503 sites, nine ecoregions, and 26 years. Butterflies are a biodiverse group of pollinators, herbivores, and prey, making them useful bellwethers of environmental change. We found great heterogeneity in butterfly species' abundance trends, aggregating near zero, but with a tendency toward decline. There was strong spatial clustering, however, into regions of increase, decrease, or relative stasis. Recent precipitation and temperature appeared to largely drive these patterns, with butterflies generally declining at increasingly dry and hot sites but increasing at relatively wet or cool sites. In contrast, landscape and butterfly trait predictors had little influence, though abundance trends were slightly more positive around urban areas. Consistent with varying responses by different species, no overall directional change in butterfly species richness or evenness was detected. Overall, a mosaic of butterfly decay and rebound hotspots appeared to largely reflect geographic variability in climate drivers. Ongoing controversy about insect declines might dissipate with a shift in focus to the causes of heterogeneous responses among taxa and sites, with climate change emerging as a key suspect when pollinator communities are broadly impacted.


Assuntos
Borboletas , Animais , Biodiversidade , Mudança Climática , Ecossistema , América do Norte
12.
Addict Biol ; 26(4): e12990, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33331103

RESUMO

The neural adaptations that occur during the transition to alcohol dependence are not entirely understood but may include a gradual recruitment of brain stress circuitry by mesolimbic reward circuitry that is activated during early stages of alcohol use. Here, we focused on dopaminergic and nondopaminergic projections from the ventral tegmental area (VTA), important for mediating acute alcohol reinforcement, to the central nucleus of the amygdala (CeA), important for alcohol dependence-related negative affect and escalated alcohol drinking. The VTA projects directly to the CeA, but the functional relevance of this circuit is not fully established. Therefore, we combined retrograde and anterograde tracing, anatomical, and electrophysiological experiments in mice and rats to demonstrate that the CeA receives input from both dopaminergic and nondopaminergic projection neurons primarily from the lateral VTA. We then used slice electrophysiology and fos immunohistochemistry to test the effects of alcohol dependence on activity and activation profiles of CeA-projecting neurons in the VTA. Our data indicate that alcohol dependence activates midbrain projections to the central amygdala, suggesting that VTA projections may trigger plasticity in the CeA during the transition to alcohol dependence and that this circuit may be involved in mediating behavioral dysregulation associated with alcohol dependence.


Assuntos
Alcoolismo/fisiopatologia , Núcleo Central da Amígdala/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Masculino , Camundongos , Vias Neurais/efeitos dos fármacos , Ratos , Recompensa
13.
J Child Lang ; 48(5): 862-887, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34275508

RESUMO

Three case-studies, using longitudinal records of children's spontaneous speech, illustrate what happens when a child's syntax changes. The first, examining acquisition of English verb-particle constructions, shows a near-total absence of commission errors. The second, examining acquisition of prepositional questions in English or Spanish, shows that children (i) may go as long as 9 months producing both direct-object questions and declaratives with prepositional phrases, before first attempting a prepositional question; and (ii) at some point, abrubtly begin producing prepositional questions that are correctly formed for the target language. The third case study shows that in children acquiring English, the onset of verb-particle constructions occurs almost exactly when that child begins using novel noun-noun compounds. After a discussion of the implications for the nature of syntactic knowledge, and for the mechanisms by which it is acquired, two examples are presented of as-yet untested acquisitional predictions of parametric proposals in the syntax literature.


Assuntos
Linguagem Infantil , Fala , Criança , Família , Humanos , Idioma , Desenvolvimento da Linguagem
14.
Ecol Appl ; 30(2): e02031, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31674710

RESUMO

Agricultural intensification is a leading threat to bird conservation. Highly diversified farming systems that integrate livestock and crop production might promote a diversity of habitats useful to native birds foraging across otherwise-simplified landscapes. At the same time, these features might be attractive to nonnative birds linked to a broad range of disservices to both crop and livestock production. We evaluated the influence of crop-livestock integration on wild bird richness and density along a north-south transect spanning the U.S. West Coast. We surveyed birds on 52 farms that grew primarily mixed vegetables and fruits alone or integrated livestock into production. Crop-livestock systems harbored higher native bird density and richness relative to crop-only farms, a benefit more pronounced on farms embedded in nonnatural landscapes. Crop-livestock systems bolstered native insectivores linked to the suppression of agricultural pest insects but did not bolster native granivores that may be more likely to damage crops. Crop-livestock systems also significantly increased the density of nonnative birds, primarily European Starlings (Sturnus vulgaris) and House Sparrows (Passer domesticus) that may compete with native birds for resources. Models supported a small, positive correlation between nonnative density and overall native bird density as well as between nonnative density and native granivore density. Relative to crop-only farms, on average, crop-livestock systems exhibited 1.5 times higher patch richness, 2.4 times higher density of farm structures, 7.3 times smaller field sizes, 2.4 times greater integration of woody crops, and 5.3 times greater integration of pasture/hay habitat on farm. Wild birds may have responded to this habitat diversity and/or associated food resources. Individual farm factors had significantly lower predictive power than farming system alone (change in C statistic information criterion (ΔCIC) = 80.2), suggesting crop-livestock systems may impact wild birds through a suite of factors that change with system conversion. Collectively, our findings suggest that farms that integrate livestock and crop production can attract robust native bird communities, especially within landscapes devoted to intensified food production. However, additional work is needed to demonstrate persistent farm bird communities through time, ecophysiological benefits to birds foraging on these farms, and net effects of both native and nonnative wild birds in agroecosystems.


Assuntos
Agricultura , Gado , Animais , Aves , Produtos Agrícolas , Fazendas
15.
Ecol Appl ; 30(5): e02109, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32108396

RESUMO

Characterizing factors affecting insect pest populations across variable landscapes is a major challenge for agriculture. In natural ecosystems, insect populations are strongly mediated by landscape and climatic factors. However, it has proven difficult to evaluate if similar factors predict pest dynamics in agroecosystems because control tactics exert strong confounding effects. We addressed this by assessing whether species distribution models could effectively characterize dynamics of an insect pest in intensely managed agroecosystems. Our study used a regional multi-year data set to assess landscape and climatic drivers of potato psyllid (Bactericera cockerelli) populations, which are often subjected to calendar-based insecticide treatments because they transmit pathogens to crops. Despite this, we show that psyllid populations were strongly affected by landscape and climatic factors. Psyllids were more abundant in landscapes with high connectivity, low crop diversity, and large natural areas. Psyllid population dynamics were also mediated by climatic factors, particularly precipitation and humidity. Our results show that many of the same factors that drive insect population dynamics in natural ecosystems can have similar effects in an intensive agroecosystem. More broadly, our study shows that models incorporating landscape and climatic factors can describe pest populations in agroecosystems and may thus promote more sustainable pest management.


Assuntos
Ecossistema , Hemípteros , Animais , Insetos Vetores , Insetos , Dinâmica Populacional
16.
J Biomech Eng ; 142(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31833537

RESUMO

Pelvic organ prolapse (POP) is a condition characterized by displacement of the vagina from its normal anatomical position leading to symptoms such as incontinence, physical discomfort, and poor self-image. Conservative treatment has shown limited success and surgical procedures, including the use of mesh, often lead to severe complications. To improve the current treatment methods for prolapse, the viscoelastic properties of vaginal tissue need to be characterized. We determined the biaxial stress relaxation response of vaginal tissue isolated from healthy pubertal gilts. Square specimens (n = 20) with sides aligned along the longitudinal directions (LD) and circumferential direction (CD) of the vagina were biaxially displaced up to 5 N. The specimens were then kept at the displacements corresponding to 5 N for 20 min in both the LD and CD, and the corresponding strains were measured using digital image correlation (DIC). The stresses in the LD and CD were found to decrease by 49.91 ± 5.81% and 46.22 ± 5.54% after 20 min, respectively. The strain in the LD and CD increased slightly from 0.080 ± 0.054 to 0.091 ± 0.064 and 0.050 ± 0.039 to 0.058 ± 0.047, respectively, but these changes were not significant (p > 0.01). By using the Peleg model, the initial decay rate and the asymptotic stress during stress relaxation were found to be significantly higher in the LD than in the CD (p≪0.001), suggesting higher stress relaxation in the LD. These findings may have implications for improving current surgical mesh, mechanical devices, and physical therapy used for prolapse treatment.


Assuntos
Prolapso de Órgão Pélvico , Animais , Feminino , Telas Cirúrgicas , Suínos , Vagina
17.
J Nematol ; 52: 1-7, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180379

RESUMO

Advances in sequencing technologies have accelerated our understanding of the complex genetic network of organisms and genomic divergences that are linked to evolutionary processes. While many model organisms and laboratory strains have been sequenced, wild populations are underrepresented in the growing list of sequenced genomes. Here, we present a de novo assembly of Steinernema feltiae, strain NW, collected from a working agricultural field in south central Washington, USA. Leveraging Pacific Biosciences (PacBio) long reads, we sequenced strain NW to a high depth (99×). The resulting de novo assembly is significantly larger than the previous assembly generated from the laboratory strain SN, with a noticeable improvement in continuity and completeness. Comparative analysis of two assemblies revealed numerous single nucleotide polymorphisms (SNPs), breakpoints, and indels present between the two genomes. This alternative genome resource and annotation could benefit the research community to examine the genetic foundation of evolutionary processes as well as genomic variation among conspecific populations.Advances in sequencing technologies have accelerated our understanding of the complex genetic network of organisms and genomic divergences that are linked to evolutionary processes. While many model organisms and laboratory strains have been sequenced, wild populations are underrepresented in the growing list of sequenced genomes. Here, we present a de novo assembly of Steinernema feltiae, strain NW, collected from a working agricultural field in south central Washington, USA. Leveraging Pacific Biosciences (PacBio) long reads, we sequenced strain NW to a high depth (99×). The resulting de novo assembly is significantly larger than the previous assembly generated from the laboratory strain SN, with a noticeable improvement in continuity and completeness. Comparative analysis of two assemblies revealed numerous single nucleotide polymorphisms (SNPs), breakpoints, and indels present between the two genomes. This alternative genome resource and annotation could benefit the research community to examine the genetic foundation of evolutionary processes as well as genomic variation among conspecific populations.

18.
Proc Biol Sci ; 285(1871)2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29367390

RESUMO

At local scales, native species can resist invasion by feeding on and competing with would-be invasive species. However, this relationship tends to break down or reverse at larger scales. Here, we consider the role of native species as indirect facilitators of invasion and their potential role in this diversity-driven 'invasion paradox'. We coin the term 'native turncoats' to describe native facilitators of non-native species and identify eight ways they may indirectly facilitate species invasion. Some are commonly documented, while others, such as indirect interactions within competitive communities, are largely undocumented in an invasion context. Therefore, we use models to evaluate the likelihood that these competitive interactions influence invasions. We find that native turncoat effects increase with the number of resources and native species. Furthermore, our findings suggest the existence, abundance and effectiveness of native turncoats in a community could greatly influence invasion success at large scales.


Assuntos
Ecossistema , Espécies Introduzidas , Invertebrados/fisiologia , Fenômenos Fisiológicos Vegetais , Vertebrados/fisiologia , Animais , Biodiversidade , Modelos Biológicos
20.
Ecology ; 99(7): 1694, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29894559

RESUMO

Globally, dung beetles (Scarabaeidae: Scarabaeinae) are linked to many critical ecosystem processes involving the consumption and breakdown of mammal dung. Due to New Zealand's unique evolutionary history, resulting from its geographic isolation from Gondwana, endemic dung-dwelling fauna evolved in the absence of large mammals. Europeans introduced livestock to the islands in the late 18th and 19th centuries, resulting in a buildup of undecomposed feces and unrecycled nutrients due to the absence of dung beetles. To mitigate this situation, in 2011, the New Zealand Environmental Protection Agency approved the release of 11 species of exotic beetles with the expectation that these insects would fulfill a critically missing link in converting aboveground manure biomass into higher quality soils belowground. Widespread releases began in 2014. To enable others in the future to test the environmental impacts of the beetle introductions, we present a detailed characterization of soil physical, chemical, and biological properties, shortly after the initial and intentional introduction of dung beetles to 16 release sites across both the North and South Islands of New Zealand. As beetle populations become established, these baseline data will enable quantification of the degree to which different exotic dung beetle communities can modify soils, specifically if they facilitate soil nutrient cycling. There are no copyright or proprietary restrictions for research or teaching purposes. Usage of the data set must be cited by referencing this publication.


Assuntos
Besouros , Animais , Ecossistema , Fezes , Nova Zelândia , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA