Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Magn Reson Imaging ; 60(3): 954-961, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38135486

RESUMO

BACKGROUND: Cerebrovascular reactivity (CVR) is a measure of the change in cerebral blood flow (CBF) in response to a vasoactive challenge. It is a useful indicator of the brain's vascular health. PURPOSE: To evaluate the factors that influence successful and unsuccessful CVR examinations using precise arterial and end-tidal partial pressure of CO2 control during blood oxygen level-dependent (BOLD) MRI. STUDY TYPE: Retrospective. SUBJECTS: Patients that underwent a CVR between October 2005 and May 2021 were studied (total of 1162 CVR examinations). The mean (±SD) age was 46.1 (±18.8) years, and 352 patients (43%) were female. FIELD STRENGTH/SEQUENCE: 3 T; T1-weighted images, T2*-weighed two-dimensional gradient-echo sequence with standard echo-planar readout. ASSESSMENT: Measurements were obtained following precise hypercapnic stimuli using BOLD MRI as a surrogate of CBF. Successful CVR examinations were defined as those where: 1) patients were able to complete CVR testing, and 2) a clinically useful CVR map was generated. Unsuccessful examinations were defined as those where patients were not able to complete the CVR examination or the CVR maps were judged to be unreliable due to, for example, excessive head motion, and poor PETCO2 targeting. STATISTICAL ANALYSIS: Successful and unsuccessful CVR examinations between hypercapnic stimuli, and between different patterns of stimulus were compared with Chi-Square tests. Interobserver variability was determined by using the intraclass correlation coefficient (P < 0.05 is significant). RESULTS: In total 1115 CVR tests in 662 patients were included in the final analysis. The success rate of generating CVR maps was 90.8% (1012 of 1115). Among the different hypercapnic stimuli, those containing a step plus a ramp protocol was the most successful (95.18%). Among the unsuccessful examinations (9.23%), most were patient related (89.3%), the most common of which was difficulty breathing. DATA CONCLUSION: CO2-BOLD MRI CVR studies are well tolerated with a high success rate. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 3.


Assuntos
Dióxido de Carbono , Circulação Cerebrovascular , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto , Encéfalo/diagnóstico por imagem , Oxigênio/sangue , Hipercapnia/diagnóstico por imagem
2.
Can J Neurol Sci ; 51(1): 57-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36624923

RESUMO

BACKGROUND: In patients with intracranial steno-occlusive disease (SOD), the risk of hemodynamic stroke depends on the poststenotic vasodilatory reserve. Cerebrovascular reactivity (CVR) is a test for vasodilatory reserve. We tested for vasodilatory reserve by using PETCO2 as the stressor, and Blood Oxygen Level Dependent (BOLD) MRI as a surrogate of blood flow. We correlate the CVR to the incidence of stroke after a 1-year follow-up in patients with symptomatic intracranial SOD. METHODS: In this retrospective study, 100 consecutive patients with symptomatic intracranial SOD that had undergone CVR testing were identified. CVR was measured as % BOLD MR signal intensity/mmHg PETCO2. All patients with normal CVR were treated with optimal medical therapy; those with abnormal CVR were offered revascularization where feasible. We determined the incidence of stroke at 1 year. RESULTS: 83 patients were included in the study. CVR was normal in 14 patients and impaired in 69 patients ipsilateral to the lesion. Of these, 53 underwent surgical revascularization. CVR and symptoms improved in 86% of the latter. The overall incidence of stroke was 4.8 % (4/83). All strokes occurred in patients with impaired CVR (4/69; 2/53 in the surgical group, all in the nonrevascularized hemisphere), and none in patients with normal CVR (0/14). CONCLUSION: Our study confirms that CO2-BOLD MRI CVR can be used as a brain stress test for the assessment of cerebrovascular reserve. Impaired CVR is associated with a higher incidence of stroke and normal CVR despite significant stenosis is associated with a low risk for stroke.


Assuntos
Dióxido de Carbono , Acidente Vascular Cerebral , Humanos , Estudos Retrospectivos , Teste de Esforço , Circulação Cerebrovascular/fisiologia , Encéfalo , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/epidemiologia , Imageamento por Ressonância Magnética , Hemodinâmica
3.
Hum Brain Mapp ; 44(3): 1019-1029, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36308389

RESUMO

The assessment of resting perfusion measures (mean transit time, cerebral blood flow, and cerebral blood volume) with magnetic resonance imaging currently requires the presence of a susceptibility contrast agent such as gadolinium. Here, we present an initial comparison between perfusion measures obtained using hypoxia-induced deoxyhemoglobin and gadolinium in healthy study participants. We hypothesize that resting cerebral perfusion measures obtained using precise changes of deoxyhemoglobin concentration will generate images comparable to those obtained using a clinical standard, gadolinium. Eight healthy study participants were recruited (6F; age 23-60). The study was performed using a 3-Tesla scanner with an eight-channel head coil. The experimental protocol consisted of a high-resolution T1-weighted scan followed by two BOLD sequence scans in which each participant underwent a controlled bolus of transient pulmonary hypoxia, and subsequently received an intravenous bolus of gadolinium. The resting perfusion measures calculated using hypoxia-induced deoxyhemoglobin and gadolinium yielded maps that looked spatially comparable. There was no statistical difference between methods in the average voxel-wise measures of mean transit time, relative cerebral blood flow and relative cerebral blood volume, in the gray matter or white matter within each participant. We conclude that perfusion measures generated with hypoxia-induced deoxyhemoglobin are spatially and quantitatively comparable to those generated from a gadolinium injection in the same healthy participant.


Assuntos
Meios de Contraste , Gadolínio , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Hemoglobinas , Imageamento por Ressonância Magnética/métodos , Circulação Cerebrovascular/fisiologia
4.
Exp Physiol ; 107(2): 183-191, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34961983

RESUMO

NEW FINDINGS: What is the central question of this study? Is cerebrovascular reactivity affected by isocapnic changes in breathing pattern? What is the main finding and its importance? Cerebrovascular reactivity does not change with isocapnic variations in tidal volume and frequency. ABSTRACT: Deviations of arterial carbon dioxide tension from resting values affect cerebral blood vessel tone and thereby cerebral blood flow. Arterial carbon dioxide tension also affects central respiratory chemoreceptors, adjusting respiratory drive. This coincidence raises the question: does respiratory drive also affect the cerebral blood flow response to carbon dioxide? A change in cerebral blood flow for a given change in the arterial carbon dioxide tension is defined as cerebrovascular reactivity (CVR). Two studies have reached conflicting conclusions on this question, using voluntary control of breathing as a disturbing factor during measurements of CVR. Here, we address some of the methodological limitations of both studies by using sequential gas delivery and targeted control of carbon dioxide and oxygen to enable a separation of the effects of carbon dioxide on CVR from breathing vigour. We confirm that there is no detectable superimposed effect of breathing efforts on CVR.


Assuntos
Dióxido de Carbono , Circulação Cerebrovascular , Circulação Cerebrovascular/fisiologia , Células Quimiorreceptoras , Oxigênio , Respiração
5.
Magn Reson Med ; 86(6): 3012-3021, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34687064

RESUMO

PURPOSE: To demonstrate the feasibility of mapping cerebral perfusion metrics with BOLD MRI during modulation of pulmonary venous oxygen saturation. METHODS: A gas blender with a sequential gas delivery breathing circuit was used to implement rapid isocapnic changes in the partial pressure of oxygen of the arterial blood. Partial pressure of oxygen was initially lowered to a baseline of 40 mmHg. It was then rapidly raised to 95 mmHg for 20 s before rapidly returning to baseline. The induced cerebral changes in deoxyhemoglobin concentration were tracked over time using BOLD MRI in 6 healthy subjects and 1 patient with cerebral steno-occlusive disease. BOLD signal change, contrast-to-noise ratio, and time delay metrics were calculated. Perfusion metrics such as mean transit time, relative cerebral blood volume, and relative cerebral blood flow were calculated using a parametrized method with a mono-exponential residue function. An arterial input function from within the middle cerebral artery was used to scale relative cerebral blood volume and calculate absolute cerebral blood volume and cerebral blood flow. RESULTS: In normal subjects, average gray and white matter were: BOLD change = 6.3 ± 1.2% and 2.5 ± 0.6%, contrast-to-noise ratio = 4.3 ± 1.3 and 2.6 ± 0.7, time delay = 2.3 ± 0.6 s and 3.6 ± 0.7 s, mean transit time = 3.9 ± 0.6 s and 5.5 ± 0.6 s, relative cerebral blood volume = 3.7 ± 0.9 and 1.6 ± 0.4, relative cerebral blood flow = 70.1 ± 8.3 and 20.6 ± 4.0, cerebral blood flow volume = 4.1 ± 0.9 mL/100 g and 1.8 ± 0.5 mL/100 g, and cerebral blood flow = 97.2 ± 18.7 mL/100 g/min and 28.7 ± 5.9 mL/100 g/min. CONCLUSION: This study demonstrates that induced abrupt changes in deoxyhemoglobin can function as a noninvasive vascular contrast agent that may be used for cerebral perfusion imaging.


Assuntos
Circulação Cerebrovascular , Meios de Contraste , Hemoglobinas , Humanos , Imageamento por Ressonância Magnética , Artéria Cerebral Média , Saturação de Oxigênio , Perfusão , Dados Preliminares
6.
Can J Neurol Sci ; 47(3): 366-373, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32051047

RESUMO

BACKGROUND: Recent investigations now suggest that cerebrovascular reactivity (CVR) is impaired in Alzheimer's disease (AD) and may underpin part of the disease's neurovascular component. However, our understanding of the relationship between the magnitude of CVR, the speed of cerebrovascular response, and the progression of AD is still limited. This is especially true in patients with mild cognitive impairment (MCI), which is recognized as an intermediate stage between normal aging and dementia. The purpose of this study was to investigate AD and MCI patients by mapping repeatable and accurate measures of cerebrovascular function, namely the magnitude and speed of cerebrovascular response (τ) to a vasoactive stimulus in key predilection sites for vascular dysfunction in AD. METHODS: Thirty-three subjects (age range: 52-83 years, 20 males) were prospectively recruited. CVR and τ were assessed using blood oxygen level-dependent MRI during a standardized carbon dioxide stimulus. Temporal and parietal cortical regions of interest (ROIs) were generated from anatomical images using the FreeSurfer image analysis suite. RESULTS: Of 33 subjects recruited, 3 individuals were excluded, leaving 30 subjects for analysis, consisting of 6 individuals with early AD, 11 individuals with MCI, and 13 older healthy controls (HCs). τ was found to be significantly higher in the AD group compared to the HC group in both the temporal (p = 0.03) and parietal cortex (p = 0.01) following a one-way ANCOVA correcting for age and microangiopathy scoring and a Bonferroni post-hoc correction. CONCLUSION: The study findings suggest that AD is associated with a slowing of the cerebrovascular response in the temporal and parietal cortices.


Assuntos
Doença de Alzheimer/fisiopatologia , Circulação Cerebrovascular/fisiologia , Transtornos Cerebrovasculares/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Lobo Parietal/irrigação sanguínea , Lobo Temporal/irrigação sanguínea , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Dióxido de Carbono , Estudos de Casos e Controles , Transtornos Cerebrovasculares/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Feminino , Humanos , Hipercapnia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiopatologia
7.
Neuroimage ; 181: 132-141, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29981482

RESUMO

Cerebrovascular reactivity (CVR) is a measure of vascular response to a vasoactive stimulus, and can be used to assess the health of the brain vasculature. In this current study we used different analyses of BOLD fMRI responses to CO2 to provide a number of metrics including ramp and step CVR, speed of response and transfer function analysis (TFA). 51 healthy control volunteers between the ages of 18-85 (26 males) were recruited and scanned at 3T field strength. Atlases reflecting voxel-wise means and standard deviations were compiled to assess possible differences in these metrics between four age cohorts. Testing was carried out using an automated computer-controlled gas blender to induce hypercapnia in a step and ramp paradigm, and monitoring end-tidal partial pressures of CO2 (PETCO2) and O2 (PETO2). No significant differences were found for resting PETCO2 values between cohorts. Ramp CVR decreased significantly with age in white matter frontal regions comprising the ACA-MCA watershed area, a finding that may be indicative of age related changes. Similarly, TFA showed that gain was reduced in the left white matter ACA-MCA watershed area as well as the posterior and anterior cingulate cortex, and superior frontal gyrus in the oldest compared to youngest cohort. These findings, detailing changes in cerebrovascular regulation in the healthy aging brain should prove useful in mapping areas of dysregulated blood flow in individuals with vascular risk factors especially those at risk for developing vascular dementia.


Assuntos
Envelhecimento/fisiologia , Dióxido de Carbono/farmacologia , Córtex Cerebral/fisiologia , Lobo Frontal/fisiologia , Neuroimagem Funcional/métodos , Acoplamento Neurovascular/fisiologia , Substância Branca/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/diagnóstico por imagem , Feminino , Lobo Frontal/irrigação sanguínea , Lobo Frontal/diagnóstico por imagem , Giro do Cíngulo/irrigação sanguínea , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiologia , Humanos , Hipercapnia/induzido quimicamente , Hipercapnia/diagnóstico por imagem , Hipercapnia/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/irrigação sanguínea , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Substância Branca/irrigação sanguínea , Substância Branca/diagnóstico por imagem , Adulto Jovem
8.
J Stroke Cerebrovasc Dis ; 27(1): 162-168, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28918088

RESUMO

BACKGROUND: Both obstructive sleep apnea (OSA) and altered cerebrovascular reactivity (CVR) are associated with increased stroke risk. Nevertheless, the incidence of abnormal CVR in patients with OSA is uncertain due to the high variability in the way CVR is measured both within and between studies. We hypothesized that a standardized CVR with a consistent vasoactive stimulus and cerebral blood flow (CBF) measure would be reduced in patients with severe OSA compared with healthy controls. METHODS: This was a prospective study in which subjects with and without OSA were administered a standardized hypercapnic stimulus, and CBF was monitored by blood oxygen level-dependent magnetic resonance signal changes, a high space and time resolved surrogate for CBF. RESULTS: Twenty-four subjects with OSA (mean age 45.9 years, apnea-hypopnea index [AHI] 26.8 per hour) and 6 control subjects (mean age 42.8 years, AHI 2.4 per hour) were included. Compared with controls, subjects with OSA had a significantly greater whole brain (.1565 versus .1094, P = .013), gray matter (.2077 versus .1423, P = .009), and white matter (.1109 versus .0768, P = .024) CVR, respectively. CONCLUSIONS: Contrary to expectations, subjects with OSA had greater CVR compared with control subjects.


Assuntos
Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Transtornos Cerebrovasculares/fisiopatologia , Apneia Obstrutiva do Sono/fisiopatologia , Adulto , Biomarcadores/sangue , Velocidade do Fluxo Sanguíneo , Estudos de Casos e Controles , Transtornos Cerebrovasculares/sangue , Transtornos Cerebrovasculares/diagnóstico por imagem , Feminino , Humanos , Hipercapnia/sangue , Hipercapnia/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Imagem de Perfusão/métodos , Estudos Prospectivos , Fluxo Sanguíneo Regional , Apneia Obstrutiva do Sono/sangue , Apneia Obstrutiva do Sono/diagnóstico
9.
J Stroke Cerebrovasc Dis ; 27(2): 301-308, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28967593

RESUMO

BACKGROUND: Impaired cerebrovascular reactivity (CVR) is an important prognostic marker of stroke. Most measures of CVR lack (1) a reproducible vasoactive stimulus and (2) a high time and spatial resolution measure of cerebral blood flow (CBF), particularly for mechanically ventilated patients. The aim of our study was to investigate the feasibility of measuring CVR using sequential gas delivery circuit and gas blender for precise targeting of end-tidal PCO2 (PetCO2), and blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) signal as a surrogate of CBF, in mechanically ventilated patients. METHODS: Four patients with known moyamoya disease requiring preoperative CVR measurements under general anesthesia were studied. All patients had standard anesthesia induction and maintenance with intravenous propofol and rocuronium. Patients were intubated and manually ventilated with a self-inflating bag connected to a sequential breathing circuit. A computer-controlled gas blender supplied the gas mixture in proportions to attain target PetCO2. BOLD-MRI was performed at 3.0 Tesla magnet. Changes in signal per change in PetCO2 were calculated, and their magnitude color-coded and mapped onto the anatomic scan to form CVR maps. RESULTS: CVR studies were successfully performed on all patients, and the CVR values were lower in both gray and white matter bilaterally when compared with healthy volunteers. In addition, CVR maps in 3 patients showed intracerebral steal phenomenon in spite of having had cerebral revascularization procedures, indicating that they are still at risk of cerebral ischemia. CONCLUSIONS: BOLD-MRI CVR studies are feasible in mechanically ventilated patients anesthetized with propofol.


Assuntos
Artérias Cerebrais/diagnóstico por imagem , Circulação Cerebrovascular , Transtornos Cerebrovasculares/diagnóstico por imagem , Hipercapnia/sangue , Imageamento por Ressonância Magnética/métodos , Doença de Moyamoya/diagnóstico por imagem , Oxigênio/sangue , Imagem de Perfusão/métodos , Respiração Artificial/métodos , Administração Intravenosa , Adolescente , Androstanóis/administração & dosagem , Anestesia Geral , Anestésicos Intravenosos/administração & dosagem , Biomarcadores , Artérias Cerebrais/metabolismo , Artérias Cerebrais/fisiopatologia , Transtornos Cerebrovasculares/sangue , Transtornos Cerebrovasculares/fisiopatologia , Estudos de Viabilidade , Feminino , Humanos , Hipercapnia/fisiopatologia , Interpretação de Imagem Assistida por Computador , Angiografia por Ressonância Magnética , Masculino , Doença de Moyamoya/sangue , Doença de Moyamoya/fisiopatologia , Fármacos Neuromusculares não Despolarizantes/administração & dosagem , Projetos Piloto , Valor Preditivo dos Testes , Propofol/administração & dosagem , Rocurônio , Adulto Jovem
10.
Hum Brain Mapp ; 38(7): 3415-3427, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28370825

RESUMO

Cerebral blood flow responds to a carbon dioxide challenge, and is often assessed as cerebrovascular reactivity, assuming a linear response over a limited stimulus range or a sigmoidal response over a wider range. However, these assumed response patterns may not necessarily apply to regions with pathophysiology. Deviations from sigmoidal responses are hypothesised to result from upstream flow limitations causing competition for blood flow between downstream regions, particularly with vasodilatory stimulation; flow is preferentially distributed to regions with more reactive vessels. Under these conditions, linear or sigmoidal fitting may not fairly describe the relationship between stimulus and flow. To assess the range of response patterns and their prevalence a survey of healthy control subjects and patients with cerebrovascular disease was conducted. We used a ramp carbon dioxide challenge from hypo- to hypercapnia as the stimulus, and magnetic resonance imaging to measure the flow responses. We categorized BOLD response patterns into four types based on the signs of their linear slopes in the hypo- and hypercapnic ranges, color coded and mapped them onto their respective anatomical scans. We suggest that these type maps complement maps of linear cerebrovascular reactivity by providing a better indication of the actual response patterns. Hum Brain Mapp 38:3415-3427, 2017. © 2017 Wiley Periodicals, Inc.

11.
Hum Brain Mapp ; 38(11): 5590-5602, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28782872

RESUMO

The ability of the cerebral vasculature to regulate vascular diameter, hence resistance and cerebral blood flow (CBF), in response to metabolic demands (neurovascular coupling), and perfusion pressure changes (autoregulation) may be assessed by measuring the CBF response to carbon dioxide (CO2 ). In healthy individuals, the CBF response to a ramp CO2 stimulus from hypocapnia to hypercapnia is assumed sigmoidal or linear. However, other response patterns commonly occur, especially in individuals with cerebrovascular disease, and these remain unexplained. CBF responses to CO2 in a vascular region are determined by the combined effects of the innate vascular responses to CO2 and the local perfusion pressure; the latter ensuing from pressure-flow interactions within the cerebral vascular network. We modeled this situation as two vascular beds perfused in parallel from a fixed resistance source. Our premise is that all vascular beds have a sigmoidal reduction of resistance in response to a progressive rise in CO2 . Surrogate CBF data to test the model was provided by magnetic resonance imaging of blood oxygen level-dependent (BOLD) signals. The model successfully generated all the various BOLD-CO2 response patterns, providing a physiological explanation of CBF distribution as relative differences in the network of vascular bed resistance responses to CO2 . Hum Brain Mapp 38:5590-5602, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Hipercapnia/diagnóstico por imagem , Imageamento por Ressonância Magnética , Oxigênio/sangue , Resistência Vascular/fisiologia , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Dióxido de Carbono/sangue , Humanos , Hipercapnia/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Modelos Neurológicos
12.
Ann Neurol ; 80(2): 277-85, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27352039

RESUMO

OBJECTIVE: White matter hyperintensities (WMH) observed on neuroimaging of elderly individuals are associated with cognitive decline and disability. However, the pathogenesis of WMH remains poorly understood. We observed that regions of reduced cerebrovascular reactivity (CVR) in the white matter of young individuals correspond to the regions most susceptible to WMH in the elderly. This finding prompted us to consider that reduced CVR may play a role in the pathogenesis of WMH. We hypothesized that reduced CVR precedes development of WMH. METHODS: We examined 45 subjects (age range = 50-91 years; 25 males) with moderate-severe WMH, and measured their baseline CVR using the blood oxygen level-dependent magnetic resonance imaging signal response to a standardized step change in the end-tidal partial pressure of carbon dioxide. Diffusion tensor imaging and transverse relaxation time (T2) relaxometry were performed at baseline and 1-year follow-up, with automated coregistration between time points. Baseline fractional anisotropy (FA), mean diffusivity (MD), T2, and CVR were measured in areas that progressed from normal-appearing white matter (NAWM) to WMH over the 1-year period. RESULTS: CVR and FA values in baseline NAWM that progressed to WMH were lower by mean (standard deviation) = 26.5% (23.2%) and 11.0% (7.2%), respectively, compared to the contralateral homologous NAWM that did not progress (p < 0.001). T2 and MD were higher by 8.7% (7.9%) and 17.0% (8.5%), respectively, compared to the contralateral homologous NAWM (p < 0.001). INTERPRETATION: Areas of reduced CVR precede the progression from NAWM to WMH, suggesting that hemodynamic impairment may contribute to the pathogenesis and progression of age-related white matter disease. Ann Neurol 2016;80:277-285.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/patologia , Substância Branca/patologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Anisotropia , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuroimagem
13.
Radiology ; 272(2): 397-406, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24749715

RESUMO

PURPOSE: To examine whether controlled and tolerable levels of hypercapnia may be an alternative to adenosine, a routinely used coronary vasodilator, in healthy human subjects and animals. MATERIALS AND METHODS: Human studies were approved by the institutional review board and were HIPAA compliant. Eighteen subjects had end-tidal partial pressure of carbon dioxide (PetCO2) increased by 10 mm Hg, and myocardial perfusion was monitored with myocardial blood oxygen level-dependent (BOLD) magnetic resonance (MR) imaging. Animal studies were approved by the institutional animal care and use committee. Anesthetized canines with (n = 7) and without (n = 7) induced stenosis of the left anterior descending artery (LAD) underwent vasodilator challenges with hypercapnia and adenosine. LAD coronary blood flow velocity and free-breathing myocardial BOLD MR responses were measured at each intervention. Appropriate statistical tests were performed to evaluate measured quantitative changes in all parameters of interest in response to changes in partial pressure of carbon dioxide. RESULTS: Changes in myocardial BOLD MR signal were equivalent to reported changes with adenosine (11.2% ± 10.6 [hypercapnia, 10 mm Hg] vs 12% ± 12.3 [adenosine]; P = .75). In intact canines, there was a sigmoidal relationship between BOLD MR response and PetCO2 with most of the response occurring over a 10 mm Hg span. BOLD MR (17% ± 14 [hypercapnia] vs 14% ± 24 [adenosine]; P = .80) and coronary blood flow velocity (21% ± 16 [hypercapnia] vs 26% ± 27 [adenosine]; P > .99) responses were similar to that of adenosine infusion. BOLD MR signal changes in canines with LAD stenosis during hypercapnia and adenosine infusion were not different (1% ± 4 [hypercapnia] vs 6% ± 4 [adenosine]; P = .12). CONCLUSION: Free-breathing T2-prepared myocardial BOLD MR imaging showed that hypercapnia of 10 mm Hg may provide a cardiac hyperemic stimulus similar to adenosine.


Assuntos
Circulação Coronária/fisiologia , Hipercapnia/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Adenosina/farmacologia , Animais , Cães , Eletrocardiografia , Humanos , Aumento da Imagem/métodos , Oximetria , Reprodutibilidade dos Testes , Vasodilatadores/farmacologia
14.
Sci Rep ; 14(1): 17121, 2024 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054379

RESUMO

Resting cerebral perfusion metrics can be calculated from the MRI ΔR2* signal during the first passage of an intravascular bolus of a Gadolinium-based contrast agent (GBCA), or more recently, a transient hypoxia-induced change in the concentration of deoxyhemoglobin ([dOHb]). Conventional analysis follows a proxy process that includes deconvolution of an arterial input function (AIF) in a tracer kinetic model. We hypothesized that the step reduction in magnetic susceptibility accompanying a step decrease in [dOHb] that occurs when a single breath of oxygen terminates a brief episode of lung hypoxia permits direct calculation of relative perfusion metrics. The time course of the ΔR2* signal response enables both the discrimination of blood arrival times and the time course of voxel filling. We calculated the perfusion metrics implied by this step signal change in seven healthy volunteers and compared them to those from conventional analyses of GBCA and dOHb using their AIF and indicator dilution theory. Voxel-wise maps of relative cerebral blood flow and relative cerebral blood volume had a high spatial and magnitude congruence for all three analyses (r > 0.9) and were similar in appearance to published maps. The mean (SD) transit times (s) in grey and white matter respectively for the step response (7.4 (1.1), 8.05 (1.71)) were greater than those for GBCA (2.6 (0.45), 3.54 (0.83)) attributable to the nature of their respective calculation models. In conclusion we believe these calculations of perfusion metrics derived directly from ΔR2* have superior merit to calculations via AIF by virtue of being calculated from a direct signal rather than through a proxy model which encompasses errors inherent in designating an AIF and performing deconvolution calculations.


Assuntos
Circulação Cerebrovascular , Hemoglobinas , Hipóxia , Imageamento por Ressonância Magnética , Humanos , Masculino , Adulto , Imageamento por Ressonância Magnética/métodos , Hemoglobinas/metabolismo , Feminino , Hipóxia/metabolismo , Meios de Contraste , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Adulto Jovem , Volume Sanguíneo Cerebral
15.
Asian J Neurosurg ; 19(2): 235-241, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974441

RESUMO

Introduction Controlling the partial pressure of carbon dioxide (PaCO 2 ) is an important consideration in patients with intracranial steno-occlusive disease to avoid reductions in critical perfusion from vasoconstriction due to hypocapnia, or reductions in blood flow due to steal physiology during hypercapnia. However, the normal range for resting PCO 2 in this patient population is not known. Therefore, we investigated the variability in resting end-tidal PCO 2 (P ET CO 2 ) in patients with intracranial steno-occlusive disease and the impact of revascularization on resting P ET CO 2 in these patients. Setting and Design Tertiary care center, retrospective chart review Materials and Methods We collected resting P ET CO 2 values in adult patients with intracranial steno-occlusive disease who presented to our institution between January 2010 and June 2021. We also explored postrevascularization changes in resting P ET CO 2 in a subset of patients. Results Two hundred and twenty-seven patients were included [moyamoya vasculopathy ( n = 98) and intracranial atherosclerotic disease ( n = 129)]. In the whole cohort, mean ± standard deviation resting P ET CO 2 was 37.8 ± 3.9 mm Hg (range: 26-47). In patients with moyamoya vasculopathy and intracranial atherosclerotic disease, resting P ET CO 2 was 38.4 ± 3.6 mm Hg (range: 28-47) and 37.4 ± 4.1 mm Hg (range: 26-46), respectively. A trend was identified suggesting increasing resting P ET CO 2 after revascularization in patients with low preoperative resting P ET CO 2 (<38 mm Hg) and decreasing resting P ET CO 2 after revascularization in patients with high preoperative resting P ET CO 2 (>38 mm Hg). Conclusion This study demonstrates that resting P ET CO 2 in patients with intracranial steno-occlusive disease is highly variable. In some patients, there was a change in resting P ET CO 2 after a revascularization procedure.

16.
Front Physiol ; 15: 1238533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725571

RESUMO

Background: Transient hypoxia-induced deoxyhemoglobin (dOHb) has recently been shown to represent a comparable contrast to gadolinium-based contrast agents for generating resting perfusion measures in healthy subjects. Here, we investigate the feasibility of translating this non-invasive approach to patients with brain tumors. Methods: A computer-controlled gas blender was used to induce transient precise isocapnic lung hypoxia and thereby transient arterial dOHb during echo-planar-imaging acquisition in a cohort of patients with different types of brain tumors (n = 9). We calculated relative cerebral blood volume (rCBV), cerebral blood flow (rCBF), and mean transit time (MTT) using a standard model-based analysis. The transient hypoxia induced-dOHb MRI perfusion maps were compared to available clinical DSC-MRI. Results: Transient hypoxia induced-dOHb based maps of resting perfusion displayed perfusion patterns consistent with underlying tumor histology and showed high spatial coherence to gadolinium-based DSC MR perfusion maps. Conclusion: Non-invasive transient hypoxia induced-dOHb was well-tolerated in patients with different types of brain tumors, and the generated rCBV, rCBF and MTT maps appear in good agreement with perfusion maps generated with gadolinium-based DSC MR perfusion.

17.
Front Physiol ; 14: 1167857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250139

RESUMO

Introduction: Use of contrast in determining hemodynamic measures requires the deconvolution of an arterial input function (AIF) selected over a voxel in the middle cerebral artery to calculate voxel wise perfusion metrics. Transfer function analysis (TFA) offers an alternative analytic approach that does not require identifying an AIF. We hypothesised that TFA metrics Gain, Lag, and their ratio, Gain/Lag, correspond to conventional AIF resting perfusion metrics relative cerebral blood volume (rCBV), mean transit time (MTT) and relative cerebral blood flow (rCBF), respectively. Methods: 24 healthy participants (17 M) and 1 patient with steno-occlusive disease were recruited. We used non-invasive transient hypoxia-induced deoxyhemoglobin as an MRI contrast. TFA and conventional AIF analyses were used to calculate averages of whole brain and smaller regions of interest. Results: Maps of these average metrics had colour scales adjusted to enhance contrast and identify areas of high congruence. Regional gray matter/white matter (GM/WM) ratios for MTT and Lag, rCBF and Gain/Lag, and rCBV and Gain were compared. The GM/WM ratios were greater for TFA metrics compared to those from AIF analysis indicating an improved regional discrimination. Discussion: Resting perfusion measures generated by The BOLD analysis resulting from a transient hypoxia induced variations in deoxyhemoglobin analyzed by TFA are congruent with those analyzed by conventional AIF analysis.

18.
Front Neuroimaging ; 2: 1048652, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554650

RESUMO

Introduction: Dynamic susceptibility contrast (DSC) MRI allows clinicians to determine perfusion parameters in the brain, such as cerebral blood flow, cerebral blood volume, and mean transit time. To enable quantification, susceptibility changes can be induced using gadolinium (Gd) or deoxyhemoglobin (dOHb), the latter just recently introduced as a contrast agent in DSC. Previous investigations found that experimental parameters and analysis choices, such as the susceptibility amplitude and partial volume, affect perfusion quantification. However, the accuracy and precision of DSC MRI has not been systematically investigated, particularly in the lower susceptibility range. Methods: In this study, we compared perfusion values determined using Gd with values determined using a contrast agent with a lower susceptibility-dOHb-under different physiological conditions, such as varying the baseline blood oxygenation and/or magnitude of hypoxic bolus, by utilizing numerical simulations and conducting experiments on healthy subjects at 3T. The simulation framework we developed for DSC incorporates MRI signal contributions from intravascular and extravascular proton spins in arterial, venous, and cerebral tissue voxels. This framework allowed us to model the MRI signal in response to both Gd and dOHb. Results and discussion: We found, both in the experimental results and simulations, that a reduced intravascular volume of the selected arterial voxel, reduced baseline oxygen saturation, greater susceptibility of applied contrast agent (Gd vs. dOHb), and/or larger magnitude of applied hypoxic bolus reduces the overestimation and increases precision of cerebral blood volume and flow. As well, we found that normalizing tissue to venous rather than arterial signal increases the accuracy of perfusion quantification across experimental paradigms. Furthermore, we found that shortening the bolus duration increases the accuracy and reduces the calculated values of mean transit time. In summary, we experimentally uncovered an array of perfusion quantification dependencies, which agreed with the simulation framework predictions, using a wider range of susceptibility values than previously investigated. We argue for caution when comparing absolute and relative perfusion values within and across subjects obtained from a standard DSC MRI analysis, particularly when employing different experimental paradigms and contrast agents.

19.
J Cereb Blood Flow Metab ; 43(12): 2085-2095, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37632334

RESUMO

Evaluation of cerebrovascular reactivity (CVR) to hypo- and hypercapnia is a valuable test for the assessment of vasodilatory reserve. While hypercapnia-induced CVR testing is usually performed at normoxia, mild hyperoxia may increase tolerability of hypercapnia by reducing the ventilatory distress. However, the effects of mild hyperoxia on CVR was unknown. We therefore recruited 21 patients with a range of steno-occlusive diseases and 12 healthy participants who underwent a standardized 13-minute step plus ramp CVR test with a carbon dioxide gas challenge at the subject's resting end-tidal partial pressure of oxygen or at mild hyperoxia (PetO2 = 150 mmHg) depending on to which group they were assigned. In 11 patients, the second CVR test was at normoxia to examine test-retest differences. CVR was defined as % Δ Signal/ΔPetCO2. We found that there was no significant difference between CVR test results conducted at normoxia and at mild hyperoxia for participants in Groups 1 and 2 for the step and ramp portion. We also found no difference between test and retest CVR at normoxia for patients with cerebrovascular pathology (Group 3) for step and ramp portion. We concluded normoxic CVR is repeatable, and that mild hyperoxia does not affect CVR.


Assuntos
Hipercapnia , Hiperóxia , Humanos , Oxigênio/metabolismo , Pressão Parcial , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos , Dióxido de Carbono/metabolismo , Encéfalo/irrigação sanguínea
20.
AJNR Am J Neuroradiol ; 45(1): 44-50, 2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38164530

RESUMO

BACKGROUND AND PURPOSE: MR imaging-based cerebral perfusion metrics can be obtained by tracing the passage of a bolus of contrast through the microvasculature of the brain parenchyma. Thus, the temporal signal pattern of the contrast agent is typically measured over a large artery such as the MCA to generate the arterial input function. The largest intracranial arteries in the brain may not always be suitable for selecting the arterial input function due to skull base susceptibility artifacts or reduced size from steno-occlusive disease. Therefore, a suitable alternative arterial input function window would be useful. The choroid plexus is a highly vascular tissue composed essentially of arterialized blood vessels and acellular stroma with low metabolic requirements relative to its blood flow and may be a suitable alternative to identify the arterial input function. MATERIALS AND METHODS: We studied 8 healthy participants and 7 patients with gliomas who were administered a bolus of gadolinium. We selected an arterial input function from both the left and right M1 segments of the MCA and both lateral ventricles of the choroid plexus for each participant. We compared the changes in the T2* signal and the calculated resting perfusion metrics using the arterial input functions selected from the MCA and choroid plexus. RESULTS: We found no systematic difference between resting perfusion metrics in GM and WM when calculated using an arterial input function from the MCA or choroid plexus in the same participant. CONCLUSIONS: The choroid plexus provides an alternative location from which an arterial input function may be sampled when a suitable measure over an MCA is not available.


Assuntos
Plexo Corióideo , Imageamento por Ressonância Magnética , Humanos , Artérias , Perfusão , Circulação Cerebrovascular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA